A M Almas Shahriyar Azad, Zarin Tasnim Oishi, Md. Ariful Islam, Md. Rakibul Islam
{"title":"Advancing Economical and Environmentally Conscious Electrification: A Comprehensive Framework for Microgrid Design in Off-Grid Regions","authors":"A M Almas Shahriyar Azad, Zarin Tasnim Oishi, Md. Ariful Islam, Md. Rakibul Islam","doi":"10.1002/gch2.202400169","DOIUrl":null,"url":null,"abstract":"<p>The design of renewable energy systems traditionally emphasizes life cycle costs, often focusing primarily on emissions rather than a comprehensive life cycle impact assessment. This research proposes a four-tier methodology to balance cost-effectiveness and sustainability in the electrification of remote areas. Tier 1 focuses on understanding the community context by analyzing electrical load profiles, meteorological data, and component specifications for microgrid design. Tier 2 evaluates the feasibility of various systems, optimizing them through cost analysis and Multi-Criteria Decision-Making (MCDM) to rank alternatives. Tier 3 assesses environmental impacts using life cycle assessment, ranking alternatives based on environmental criteria. Tier 4 integrates cost and environmental rankings to determine the most suitable energy configurations, followed by sensitivity analysis to ensure robust decision-making. The methodology is validated through a case study of an unelectrified remote community, demonstrating that the PV-Wind Turbine-Biomass Generator-Converter configuration is the most robust alternative, proving to be the optimal choice in 50% of the analyzed scenarios, achieving a Cost of Energy of 0.213 USD/kWh while minimizing environmental impact across all 18 criteria considered over a 25-year life cycle. This novel framework offers a scalable approach to designing renewable energy systems, enhancing sustainable electrification efforts in developing regions.</p>","PeriodicalId":12646,"journal":{"name":"Global Challenges","volume":"8 11","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gch2.202400169","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Challenges","FirstCategoryId":"103","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gch2.202400169","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The design of renewable energy systems traditionally emphasizes life cycle costs, often focusing primarily on emissions rather than a comprehensive life cycle impact assessment. This research proposes a four-tier methodology to balance cost-effectiveness and sustainability in the electrification of remote areas. Tier 1 focuses on understanding the community context by analyzing electrical load profiles, meteorological data, and component specifications for microgrid design. Tier 2 evaluates the feasibility of various systems, optimizing them through cost analysis and Multi-Criteria Decision-Making (MCDM) to rank alternatives. Tier 3 assesses environmental impacts using life cycle assessment, ranking alternatives based on environmental criteria. Tier 4 integrates cost and environmental rankings to determine the most suitable energy configurations, followed by sensitivity analysis to ensure robust decision-making. The methodology is validated through a case study of an unelectrified remote community, demonstrating that the PV-Wind Turbine-Biomass Generator-Converter configuration is the most robust alternative, proving to be the optimal choice in 50% of the analyzed scenarios, achieving a Cost of Energy of 0.213 USD/kWh while minimizing environmental impact across all 18 criteria considered over a 25-year life cycle. This novel framework offers a scalable approach to designing renewable energy systems, enhancing sustainable electrification efforts in developing regions.