A star polymer POSS-PMMA based gel electrolyte with balanced electrochemical and mechanical properties for lithium metal battery

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Polymer Pub Date : 2024-11-15 DOI:10.1016/j.polymer.2024.127822
Jinqi Chen, Cong Luo, Yanhua Niu, Guangxian Li
{"title":"A star polymer POSS-PMMA based gel electrolyte with balanced electrochemical and mechanical properties for lithium metal battery","authors":"Jinqi Chen, Cong Luo, Yanhua Niu, Guangxian Li","doi":"10.1016/j.polymer.2024.127822","DOIUrl":null,"url":null,"abstract":"Gel polymer electrolyte (GPE) is one of the promising candidates to overcome the defects of liquid and solid electrolyte for lithium metal batteries (LMBs). The obstacle for the practical application of GPEs lies in achieving a balance between ion transport, mechanical properties and interface stability. In this work, a star shaped polymer matrix polyhedral oligomeric silsesquioxane-polymethyl methacrylate (POSS-PMMA) is successfully synthesized with POSS as the core via atom transfer radical polymerization (ATRP) method. 1-ethyl-3-methylimidazole bis(trifluoromethanesulfon)imide ([EMIM][TFSI]) and bistrifluoromethanesulfonimide lithium salt (LiTFSI) are blended with the matrix to increase ionic conductivity. Attributed to the star structure and the lithium ion migration channel provided by POSS, the synthesized GPE possesses excellent balanced mechanical and electrochemical properties. To further stabilize the Li/GPE interface, a polymer and plastic crystalline electrolyte (PPCE) is coated as interface modification layer on both sides of GPE. Benefitting from the design, the synthesized GPE reaches a highly stable Li striping/plating cycling for 1000 h at 0.1 mA cm<sup>−2</sup> with ionic conductivity of 3.5×10<sup>−4</sup> S cm<sup>−1</sup>, Li<sup>+</sup> transference number of 0.35, and electrochemical stability window of 4.9 V. Furthermore, the Li||POSS-PMMA-PPCE||LiFePO<sub>4</sub> (LFP) full cell shows a high capacity retention of 99.5% after 100 cycles at 0.2 C under room temperature (RT), and the high voltage Li||POSS-PMMA-PPCE||LiNi<sub>1-x-y</sub>MnxCo<sub>y</sub>O<sub>2</sub> (NCM811) cell shows a high capacity retention of 88.3% after 50 cycles at 0.1 C under RT. This work opens up a new frontier to stabilize the Li/GPE interface and enables safe operation of room temperature lithium metal batteries.","PeriodicalId":405,"journal":{"name":"Polymer","volume":"5 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.polymer.2024.127822","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Gel polymer electrolyte (GPE) is one of the promising candidates to overcome the defects of liquid and solid electrolyte for lithium metal batteries (LMBs). The obstacle for the practical application of GPEs lies in achieving a balance between ion transport, mechanical properties and interface stability. In this work, a star shaped polymer matrix polyhedral oligomeric silsesquioxane-polymethyl methacrylate (POSS-PMMA) is successfully synthesized with POSS as the core via atom transfer radical polymerization (ATRP) method. 1-ethyl-3-methylimidazole bis(trifluoromethanesulfon)imide ([EMIM][TFSI]) and bistrifluoromethanesulfonimide lithium salt (LiTFSI) are blended with the matrix to increase ionic conductivity. Attributed to the star structure and the lithium ion migration channel provided by POSS, the synthesized GPE possesses excellent balanced mechanical and electrochemical properties. To further stabilize the Li/GPE interface, a polymer and plastic crystalline electrolyte (PPCE) is coated as interface modification layer on both sides of GPE. Benefitting from the design, the synthesized GPE reaches a highly stable Li striping/plating cycling for 1000 h at 0.1 mA cm−2 with ionic conductivity of 3.5×10−4 S cm−1, Li+ transference number of 0.35, and electrochemical stability window of 4.9 V. Furthermore, the Li||POSS-PMMA-PPCE||LiFePO4 (LFP) full cell shows a high capacity retention of 99.5% after 100 cycles at 0.2 C under room temperature (RT), and the high voltage Li||POSS-PMMA-PPCE||LiNi1-x-yMnxCoyO2 (NCM811) cell shows a high capacity retention of 88.3% after 50 cycles at 0.1 C under RT. This work opens up a new frontier to stabilize the Li/GPE interface and enables safe operation of room temperature lithium metal batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于 POSS-PMMA 的星形聚合物凝胶电解质,具有均衡的电化学和机械性能,适用于锂金属电池
凝胶聚合物电解质(GPE)是克服锂金属电池(LMB)液态和固态电解质缺陷的有前途的候选材料之一。凝胶聚合物电解质的实际应用障碍在于实现离子传输、机械性能和界面稳定性之间的平衡。本研究通过原子转移自由基聚合(ATRP)方法,成功合成了以 POSS 为核心的星形聚合物基质多面体低聚硅倍半氧烷-甲基丙烯酸甲酯(POSS-PMMA)。1-ethyl-3-methylimidazole bis(trifluoromethanesulfon)imide ([EMIM][TFSI]) 和 bistrifluoromethanesulfonimide lithium salt (LiTFSI) 与基体混合以增加离子导电性。由于星形结构和 POSS 提供的锂离子迁移通道,合成的 GPE 具有优异的机械和电化学平衡特性。为了进一步稳定锂/GPE界面,在 GPE 的两侧涂覆了聚合物和塑料结晶电解质(PPCE)作为界面改性层。得益于这一设计,合成的 GPE 在 0.1 mA cm-2 下可实现 1000 h 高度稳定的锂剥离/电镀循环,离子电导率为 3.5×10-4 S cm-1,锂+转移数为 0.35,电化学稳定性窗口为 4.9 V。此外,Li||POSS-PMMA-PPCE||LiFePO4(LFP)全电池在室温(RT)下 0.2 C 条件下循环 100 次后显示出 99.5% 的高容量保持率,高压 Li||POSS-PMMA-PPCE||LiNi1-x-yMnxCoyO2 (NCM811)电池在室温(RT)下 0.1 C 条件下循环 50 次后显示出 88.3% 的高容量保持率。这项工作开辟了稳定锂/GPE 界面的新领域,使室温锂金属电池能够安全运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer
Polymer 化学-高分子科学
CiteScore
7.90
自引率
8.70%
发文量
959
审稿时长
32 days
期刊介绍: Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics. The main scope is covered but not limited to the following core areas: Polymer Materials Nanocomposites and hybrid nanomaterials Polymer blends, films, fibres, networks and porous materials Physical Characterization Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films Polymer Engineering Advanced multiscale processing methods Polymer Synthesis, Modification and Self-assembly Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization Technological Applications Polymers for energy generation and storage Polymer membranes for separation technology Polymers for opto- and microelectronics.
期刊最新文献
Polymerization of acrylonitrile in dimethyl carbonate: a kinetic and mechanistic study Effect of Hydrogen Bonding Strength on the Structure and Properties of Phase-separated Hydrogel from Gelatin Impact energy absorption in 3D printed bio-inspired PLA structures Disclosing the UV aging mechanisms of polyamide 66 industrial fiber on the base of the multi-scale structural evolutions Engineering iodine decorated azo-bridged porous organic polymer: A brilliant catalyst for the preparation of 2,4,6-trisubstituted pyridines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1