K. Nalepka, J. Tabin, J. Kawałko, A. Brodecki, P. Bała, Z. Kowalewski
{"title":"Plastic Flow Instability in Austenitic Stainless Steels at Room Temperature: Macroscopic Tests and Microstructural Analysis","authors":"K. Nalepka, J. Tabin, J. Kawałko, A. Brodecki, P. Bała, Z. Kowalewski","doi":"10.1016/j.ijplas.2024.104159","DOIUrl":null,"url":null,"abstract":"AISI 304 steel experiences plastic flow instability during tension at room temperature if appropriate conditions are applied: a low strain rate and a sufficiently long gauge section of the sample. Then, propagation of the strain-localised band is activated. The electron backscattered diffraction (EBSD) research revealed that the reason is not only the difference in the content of the secondary phase – martensite α’ across the front face, but also the change in the volume fraction of austenite grains with Copper (Cu) and Goss-Brass (GB) orientation. Consequently, there is a division between two areas of high and limited deformation capacity. The tendency to maintain the continuity of deformation fields induces a massive rotation of austenite grains to Cu and GB orientations, which then undergo shearing and phase transformation. As a result, momentary strain accumulation leaves behind a stiffer zone. It is shown that the trapping of austenite grains prone to large deformations, inside the matrix with Cu and GB orientations, makes the formation of a plastic strain front possible. These features improve the ductility and strength of the 304 steel over 316L and 316LN at room temperature. The in-situ EBSD tension studies for the considered grades reveal three developing textures, with their comparison showing a gradual decrease in the preferences of the Cu and GB components. Thus, the appearing bands of the accumulated strains in 316L are limited by the Cu and GB areas, while such blockages do not occur in 316LN. The presented strengthening mechanism is confirmed by the digital image correlation (DIC) measurements. The root-mean-square (RMS) function of strains along the tensile direction, characterising the linear surroundings of the considered point, is introduced as a tool for linking the micro and macro scales. The experimental results provide a basis for explaining discontinuous front propagation at a temperature near 0 K.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"1 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2024.104159","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
AISI 304 steel experiences plastic flow instability during tension at room temperature if appropriate conditions are applied: a low strain rate and a sufficiently long gauge section of the sample. Then, propagation of the strain-localised band is activated. The electron backscattered diffraction (EBSD) research revealed that the reason is not only the difference in the content of the secondary phase – martensite α’ across the front face, but also the change in the volume fraction of austenite grains with Copper (Cu) and Goss-Brass (GB) orientation. Consequently, there is a division between two areas of high and limited deformation capacity. The tendency to maintain the continuity of deformation fields induces a massive rotation of austenite grains to Cu and GB orientations, which then undergo shearing and phase transformation. As a result, momentary strain accumulation leaves behind a stiffer zone. It is shown that the trapping of austenite grains prone to large deformations, inside the matrix with Cu and GB orientations, makes the formation of a plastic strain front possible. These features improve the ductility and strength of the 304 steel over 316L and 316LN at room temperature. The in-situ EBSD tension studies for the considered grades reveal three developing textures, with their comparison showing a gradual decrease in the preferences of the Cu and GB components. Thus, the appearing bands of the accumulated strains in 316L are limited by the Cu and GB areas, while such blockages do not occur in 316LN. The presented strengthening mechanism is confirmed by the digital image correlation (DIC) measurements. The root-mean-square (RMS) function of strains along the tensile direction, characterising the linear surroundings of the considered point, is introduced as a tool for linking the micro and macro scales. The experimental results provide a basis for explaining discontinuous front propagation at a temperature near 0 K.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.