Xuebin Li, Jie Zou, Zhenqian Cheng, Weifeng Zhang, Xiaofeng Ye, Xie Meng, Xiaoqing Jiang, Dongxing Zhang, Jie Wang, Qinghui Jin, Jiawen Jian, Xin Zhang
{"title":"Increasing the sensitivity of an amperometric, YSZ-based total-NOx sensor by opening the gas diffusion pathways in a porous La0.8Sr0.2MnO3 electrode","authors":"Xuebin Li, Jie Zou, Zhenqian Cheng, Weifeng Zhang, Xiaofeng Ye, Xie Meng, Xiaoqing Jiang, Dongxing Zhang, Jie Wang, Qinghui Jin, Jiawen Jian, Xin Zhang","doi":"10.1016/j.snb.2024.136949","DOIUrl":null,"url":null,"abstract":"To boost the sensitivity of amperometric total-NO<sub>x</sub> sensors, polymethyl methacrylate (PMMA) was employed as a pore former to open up the diffusion pathways of a porous La<sub>0.8</sub>Sr<sub>0.2</sub>MnO<sub>3</sub> (LSM) sensing electrode (SE). The porous LSM was characterized through scanning electron microscopy and mercury intrusion porosimetry, and its sensing performance was evaluated in a test setup based on a dynamic gas mixer. The results indicate that adding PMMA increases the gas diffusion pathway and the porosity of SE. Specifically, the NO<sub>x</sub> sensitivity increased from 4.794 to 6.516 μA/decade, then decreased to 2.428 μA/decade, with the increase in the SE porosity. These results suggest that high SE porosity benefits gas diffusion but diminishes the three-phase boundary for electrochemical reactions. Meanwhile, the sensor exhibited remarkable selectivity and consistency, which means that opening the gas diffusion pathway using PMMA is a reliable technology for high-temperature NO<sub>x</sub> sensors.","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.snb.2024.136949","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To boost the sensitivity of amperometric total-NOx sensors, polymethyl methacrylate (PMMA) was employed as a pore former to open up the diffusion pathways of a porous La0.8Sr0.2MnO3 (LSM) sensing electrode (SE). The porous LSM was characterized through scanning electron microscopy and mercury intrusion porosimetry, and its sensing performance was evaluated in a test setup based on a dynamic gas mixer. The results indicate that adding PMMA increases the gas diffusion pathway and the porosity of SE. Specifically, the NOx sensitivity increased from 4.794 to 6.516 μA/decade, then decreased to 2.428 μA/decade, with the increase in the SE porosity. These results suggest that high SE porosity benefits gas diffusion but diminishes the three-phase boundary for electrochemical reactions. Meanwhile, the sensor exhibited remarkable selectivity and consistency, which means that opening the gas diffusion pathway using PMMA is a reliable technology for high-temperature NOx sensors.
期刊介绍:
Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.