Composite Solid‐State Electrolyte with Vertical Ion Transport Channels for All‐Solid‐State Lithium Metal Batteries

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-11-16 DOI:10.1002/smll.202407476
Hao Sun, Guangzeng Cheng, Haoran Wang, Yanan Gao, Jingyi Wu
{"title":"Composite Solid‐State Electrolyte with Vertical Ion Transport Channels for All‐Solid‐State Lithium Metal Batteries","authors":"Hao Sun, Guangzeng Cheng, Haoran Wang, Yanan Gao, Jingyi Wu","doi":"10.1002/smll.202407476","DOIUrl":null,"url":null,"abstract":"Composite solid electrolytes (CSEs) consisting of polymers and fast ionic conductors are considered a promising strategy for realizing safe rechargeable batteries with high energy density. However, randomly distributed fast ionic conductor fillers in the polymer matrix result in tortuous and discontinuous ion channels, which severely constrains the ion transport capacity and restricts its practical application. Here, CSEs with highly loaded vertical ion transport channels are fabricated by magnetically manipulating the alignment of Li<jats:sub>0.35</jats:sub>La<jats:sub>0.55</jats:sub>TiO<jats:sub>3</jats:sub> nanowires. The construction of densely packed, vertically aligned ion transport channels can effectively enhance the ion transport capacity of the electrolyte, thereby significantly increasing ionic conductivity. At room temperature (RT), the presented CSE exhibits a remarkable ionic conductivity of up to 2.5 × 10<jats:sup>−4</jats:sup> S cm<jats:sup>−1</jats:sup>. The assembled LiFePO<jats:sub>4</jats:sub>/Li cell delivers high capacities of 118 mAh g<jats:sup>−1</jats:sup> at 5 C at 60 °C and a RT capacity of 115 mAh g<jats:sup>−1</jats:sup> can be achieved at a charging rate of 0.5 C. This work paves an encouraging avenue for further development of advanced CSEs that favor lithium metal batteries with high energy density and electrochemical performance.","PeriodicalId":228,"journal":{"name":"Small","volume":"31 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202407476","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Composite solid electrolytes (CSEs) consisting of polymers and fast ionic conductors are considered a promising strategy for realizing safe rechargeable batteries with high energy density. However, randomly distributed fast ionic conductor fillers in the polymer matrix result in tortuous and discontinuous ion channels, which severely constrains the ion transport capacity and restricts its practical application. Here, CSEs with highly loaded vertical ion transport channels are fabricated by magnetically manipulating the alignment of Li0.35La0.55TiO3 nanowires. The construction of densely packed, vertically aligned ion transport channels can effectively enhance the ion transport capacity of the electrolyte, thereby significantly increasing ionic conductivity. At room temperature (RT), the presented CSE exhibits a remarkable ionic conductivity of up to 2.5 × 10−4 S cm−1. The assembled LiFePO4/Li cell delivers high capacities of 118 mAh g−1 at 5 C at 60 °C and a RT capacity of 115 mAh g−1 can be achieved at a charging rate of 0.5 C. This work paves an encouraging avenue for further development of advanced CSEs that favor lithium metal batteries with high energy density and electrochemical performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于全固态金属锂电池的具有垂直离子传输通道的复合固态电解质
由聚合物和快速离子导体组成的复合固体电解质(CSE)被认为是实现高能量密度安全充电电池的一种有前途的策略。然而,聚合物基体中随机分布的快速离子导体填料导致离子通道曲折且不连续,严重制约了离子传输能力,限制了其实际应用。在这里,通过磁力操纵 Li0.35La0.55TiO3 纳米线的排列,制造出了具有高负载垂直离子传输通道的 CSE。构建密集排列的垂直离子传输通道可有效增强电解质的离子传输能力,从而显著提高离子电导率。在室温(RT)条件下,所提出的 CSE 具有高达 2.5 × 10-4 S cm-1 的显著离子电导率。组装好的 LiFePO4/Li 电池在 60 °C、5 C 条件下可提供 118 mAh g-1 的高容量,而在 0.5 C 充电速率下,RT 容量可达 115 mAh g-1。这项工作为进一步开发先进的 CSE 铺平了令人鼓舞的道路,有利于锂金属电池实现高能量密度和电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
A Highly Compatible Deep Eutectic Solvent-Based Poly(ethylene) Oxide Polymer Electrolyte to Enable the Stable Operation of 4.5 V Lithium Metal Batteries Supercrystal Engineering of Nanoarrows Enabled by Tailored Concavity (Small 47/2024) Recent Advances of Bio-Based Hydrogel Derived Interfacial Evaporator for Sustainable Water and Collaborative Energy Storage Applications (Small 47/2024) Copper-Graphene Composite (CGC) Conductors: Synthesis, Microstructure, and Electrical Performance (Small 47/2024) Multi-Biomarker Profiling for Precision Diagnosis of Lung Cancer (Small 47/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1