Coordination of Ultralow Permittivity and Higher Thermal Conductivity of Polyimide Induced by Unique Interfacial Self‐Assembly Behavior

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-16 DOI:10.1002/adfm.202417843
Xiaodi Dong, Baoquan Wan, Langbiao Huang, Quanliang Zhao, Ruifeng Yao, Jinghui Gao, Can Ding, Xu Wang, Zhi‐Min Dang, George Chen, Jun‐Wei Zha
{"title":"Coordination of Ultralow Permittivity and Higher Thermal Conductivity of Polyimide Induced by Unique Interfacial Self‐Assembly Behavior","authors":"Xiaodi Dong, Baoquan Wan, Langbiao Huang, Quanliang Zhao, Ruifeng Yao, Jinghui Gao, Can Ding, Xu Wang, Zhi‐Min Dang, George Chen, Jun‐Wei Zha","doi":"10.1002/adfm.202417843","DOIUrl":null,"url":null,"abstract":"Upgrading the available dielectric materials is the most effective approach to solve the poor quality of signal transmission and heat buildup caused by high density integration. In this work, a design strategy for multilayer 3D porous composite networks is proposed, relying on the self‐assembly effect of “crystal‐like phase” to achieve the synergistic optimization of low permittivity and high thermal conductivity of polyimide. The obtained three‐layer porous polyimide composite film (PSLS) features an ultralow permittivity of 1.89, an in‐plane thermal conductivity as high as 13.58 W m<jats:sup>−1</jats:sup> K<jats:sup>−1</jats:sup>, and maintains well electrical insulating property. Inspiringly, the first digital thermoacoustic generator with wide frequency response has been designed based on PSLS film. It achieves sound pressure levels up to 60.1 dB in the 20–100 kHz range and integrates the efficient sound generation of an ultrasonic generator with real‐time display. This work will provide a novel concept material for the smart electronics and electrical fields.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202417843","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Upgrading the available dielectric materials is the most effective approach to solve the poor quality of signal transmission and heat buildup caused by high density integration. In this work, a design strategy for multilayer 3D porous composite networks is proposed, relying on the self‐assembly effect of “crystal‐like phase” to achieve the synergistic optimization of low permittivity and high thermal conductivity of polyimide. The obtained three‐layer porous polyimide composite film (PSLS) features an ultralow permittivity of 1.89, an in‐plane thermal conductivity as high as 13.58 W m−1 K−1, and maintains well electrical insulating property. Inspiringly, the first digital thermoacoustic generator with wide frequency response has been designed based on PSLS film. It achieves sound pressure levels up to 60.1 dB in the 20–100 kHz range and integrates the efficient sound generation of an ultrasonic generator with real‐time display. This work will provide a novel concept material for the smart electronics and electrical fields.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
独特的界面自组装行为诱导聚酰亚胺的超低脆性和较高导热性的协调
要解决高密度集成带来的信号传输质量差和热量积聚问题,提升现有介电材料是最有效的方法。本文提出了一种多层三维多孔复合网络的设计策略,依靠 "类晶相 "的自组装效应,实现了聚酰亚胺低介电常数和高导热系数的协同优化。所获得的三层多孔聚酰亚胺复合薄膜(PSLS)具有 1.89 的超低介电常数、高达 13.58 W m-1 K-1 的面内热导率和良好的电绝缘性能。令人鼓舞的是,基于 PSLS 薄膜设计出了第一台具有宽频率响应的数字热声发生器。它能在 20-100 kHz 范围内实现高达 60.1 dB 的声压级,并集成了超声波发生器的高效发声和实时显示功能。这项工作将为智能电子和电气领域提供一种新型概念材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Highly Efficient Blue Organic Light-Emitting Devices Based on “Cross”-Shaped Hot Exciton Emitters Unlocking the Origin of High-Temperature Superconductivity in Molecular Hydrides at Moderate Pressures A Highly Potent Os@Au-TPA Coordination Structure-Based Sonosensitizer for Tumor Sono-Immunotherapies Biodegradable Acid-Responsive Nanocarrier for Enhanced Antibiotic Therapy Against Drug-Resistant Helicobacter Pylori via Urease Inhibition Long-Lasting, Steady and Enhanced Energy Harvesting by Inserting a Conductive Layer into the Piezoelectric Polymer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1