Straw incorporating in shallow soil layer improves field productivity by impacting soil hydrothermal conditions and maize reproductive allocation in semiarid east African Plateau
Sylvia Ngaira Indoshi , Wesly Kiprotich Cheruiyot , Muhammad Maqsood Ur Rehman , Fu-Jian Mei , Qing-Hui Wen , Alex Ndolo Munyasya , Kiprotich Koskei , David Mwehia Mburu , Aggrey Bernard Nyende , Levis Kavagi , Delphine Nyanchera Gisacho , Eliyas Feyisa Sori , Yi-Bo Wang , Hong-Yan Tao , You-Cai Xiong
{"title":"Straw incorporating in shallow soil layer improves field productivity by impacting soil hydrothermal conditions and maize reproductive allocation in semiarid east African Plateau","authors":"Sylvia Ngaira Indoshi , Wesly Kiprotich Cheruiyot , Muhammad Maqsood Ur Rehman , Fu-Jian Mei , Qing-Hui Wen , Alex Ndolo Munyasya , Kiprotich Koskei , David Mwehia Mburu , Aggrey Bernard Nyende , Levis Kavagi , Delphine Nyanchera Gisacho , Eliyas Feyisa Sori , Yi-Bo Wang , Hong-Yan Tao , You-Cai Xiong","doi":"10.1016/j.still.2024.106351","DOIUrl":null,"url":null,"abstract":"<div><div>Ridge-furrow plastic film mulching (RFM) planting system can conserve soil water and boost crop yield in semi-arid rainfed agricultural areas. In the east African Plateau (EAP), the RFM system has shown significant promoting effects on the yield and water use efficiency in maize (<em>Zea mays</em> L.) and wheat (<em>Triticum aestivum</em> L.). Although the RFM system is effective and efficient, it is unclear how to further increase crop productivity under RFM in EAP where soil moisture is limited. This study advocates for an integrated practice (maize straw returning) in the RFM system. Field trials were conducted using maize cultivar DK8031 to investigate the effects of maize straw returning in the shallow soil layer on soil hydrothermal conditions from 2021 to 2022. Maize productivity, water use efficiency, soil organic carbon, and soil total nitrogen were determined under RFM in Kenya, EAP. Three treatments were designed as follows: 1) conventional bare flat planting, CK; 2) RF with full plastic film mulching, RFM; and 3) RFM with maize straw piece (9 t ha<sup>−1</sup>) returning to 0–30 cm soil layer, RFMR. The results indicated that soil water storage (SWS) was substantially improved by 40.8 mm in 2021 and 30.9 mm in 2022 in RFMR, respectively, than that of CK, which was also significantly greater than that of RFM (<em>p</em><0.05). Under relatively high air temperature at the silking stage, soil temperature at 15 cm soil depth was averagely reduced by 0.85 °C in RFMR and 0.15 °C in RFM, respectively, compared with CK. Across two growing seasons, grain yield and water use efficiency increased by 470 kg ha<sup>−1</sup> and 1.5 kg ha<sup>−1</sup>mm<sup>−1</sup> in RFMR compared to RFM and 2407 kg ha<sup>−1</sup> and 7.1 kg ha<sup>−1</sup>mm<sup>−1</sup> compared with CK, respectively., The highest economic benefit was found in RMFR, relative to RFM and CK. The above trend was positively associated with the improvements in hydrothermal conditions in the shallow soil layer. Additionally, soil organic carbon was increased by 0.88 g kg<sup>−1</sup> in RFMR relative to CK due to improved soil structure and physiochemical traits. For the first time, we found that straw pieces returning to the shallow soil layer can further boost maize productivity on the basis of RFM, which was intended to improve soil texture in EAP.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"246 ","pages":"Article 106351"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724003520","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Ridge-furrow plastic film mulching (RFM) planting system can conserve soil water and boost crop yield in semi-arid rainfed agricultural areas. In the east African Plateau (EAP), the RFM system has shown significant promoting effects on the yield and water use efficiency in maize (Zea mays L.) and wheat (Triticum aestivum L.). Although the RFM system is effective and efficient, it is unclear how to further increase crop productivity under RFM in EAP where soil moisture is limited. This study advocates for an integrated practice (maize straw returning) in the RFM system. Field trials were conducted using maize cultivar DK8031 to investigate the effects of maize straw returning in the shallow soil layer on soil hydrothermal conditions from 2021 to 2022. Maize productivity, water use efficiency, soil organic carbon, and soil total nitrogen were determined under RFM in Kenya, EAP. Three treatments were designed as follows: 1) conventional bare flat planting, CK; 2) RF with full plastic film mulching, RFM; and 3) RFM with maize straw piece (9 t ha−1) returning to 0–30 cm soil layer, RFMR. The results indicated that soil water storage (SWS) was substantially improved by 40.8 mm in 2021 and 30.9 mm in 2022 in RFMR, respectively, than that of CK, which was also significantly greater than that of RFM (p<0.05). Under relatively high air temperature at the silking stage, soil temperature at 15 cm soil depth was averagely reduced by 0.85 °C in RFMR and 0.15 °C in RFM, respectively, compared with CK. Across two growing seasons, grain yield and water use efficiency increased by 470 kg ha−1 and 1.5 kg ha−1mm−1 in RFMR compared to RFM and 2407 kg ha−1 and 7.1 kg ha−1mm−1 compared with CK, respectively., The highest economic benefit was found in RMFR, relative to RFM and CK. The above trend was positively associated with the improvements in hydrothermal conditions in the shallow soil layer. Additionally, soil organic carbon was increased by 0.88 g kg−1 in RFMR relative to CK due to improved soil structure and physiochemical traits. For the first time, we found that straw pieces returning to the shallow soil layer can further boost maize productivity on the basis of RFM, which was intended to improve soil texture in EAP.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.