Xiaogang Li , Rui Wang , Yanling Du , Hui Han , Shengli Guo , Xiaotong Song , Xiaotang Ju
{"title":"Significant increases in nitrous oxide emissions under simulated extreme rainfall events and straw amendments from agricultural soil","authors":"Xiaogang Li , Rui Wang , Yanling Du , Hui Han , Shengli Guo , Xiaotong Song , Xiaotang Ju","doi":"10.1016/j.still.2024.106361","DOIUrl":null,"url":null,"abstract":"<div><div>Pulsed N<sub>2</sub>O emissions resulting from field management practices (N fertilization addition and straw return) or rainfall events make for a significant proportion of the total annual N<sub>2</sub>O budget from croplands. However, it remains unclear whether altered rainfall patterns induced by climate change will stimulate the responses of pulsed N<sub>2</sub>O emissions to various field practices. In this study, we aimed to elucidate the underlying mechanisms driving pulsed N<sub>2</sub>O emissions in response to extreme rainfall events and examine their interaction with carbon and nitrogen availability. We hypothesized that highly available substrates rapidly induce an anaerobic environment and N<sub>2</sub>O pulses during extreme rainfall events. A soil column experiment under simulating extreme rainfall events was conducted to investigate the responses of pulsed N<sub>2</sub>O emissions to three common farming practices: nitrogen fertilization (N), nitrogen fertilization coupled with low straw return (N+LS), and nitrogen fertilization coupled with high straw return (N+HS). We frequently monitored surface emissions and soil concentrations of N<sub>2</sub>O and CO<sub>2</sub>, and measured O<sub>2</sub>, NH<sub>4</sub><sup>+</sup>, NO<sub>3</sub><sup>-</sup> and DOC concentrations. N and straw amendments together under simulated rainfall events significantly depleted O<sub>2</sub>, and simultaneously increased pulsed N<sub>2</sub>O emissions. The N+HS treatment exhibited the highest soil N<sub>2</sub>O concentration (51.9 µL L<sup>−1</sup>) and lowest O<sub>2</sub> concentration (4.3 %), along with high soil moisture levels (24.8 %–32.2 %). Correspondingly, the highest cumulative N<sub>2</sub>O emissions were observed in the N+HS treatment (117.8 mg m<sup>−2</sup>), followed by 52.2, 31.9, and 11.0 mg m<sup>−2</sup> for the N+LS, N, and CK treatments, respectively. The promotion of N<sub>2</sub>O production by highly available substrates confirms our hypothesis. Our work contributes to the refinement of global climate models and field mitigation practices, as pulsed N<sub>2</sub>O emissions from croplands will increase under future extreme rainfall events owing to climate change.</div></div>","PeriodicalId":49503,"journal":{"name":"Soil & Tillage Research","volume":"246 ","pages":"Article 106361"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Tillage Research","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167198724003623","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Pulsed N2O emissions resulting from field management practices (N fertilization addition and straw return) or rainfall events make for a significant proportion of the total annual N2O budget from croplands. However, it remains unclear whether altered rainfall patterns induced by climate change will stimulate the responses of pulsed N2O emissions to various field practices. In this study, we aimed to elucidate the underlying mechanisms driving pulsed N2O emissions in response to extreme rainfall events and examine their interaction with carbon and nitrogen availability. We hypothesized that highly available substrates rapidly induce an anaerobic environment and N2O pulses during extreme rainfall events. A soil column experiment under simulating extreme rainfall events was conducted to investigate the responses of pulsed N2O emissions to three common farming practices: nitrogen fertilization (N), nitrogen fertilization coupled with low straw return (N+LS), and nitrogen fertilization coupled with high straw return (N+HS). We frequently monitored surface emissions and soil concentrations of N2O and CO2, and measured O2, NH4+, NO3- and DOC concentrations. N and straw amendments together under simulated rainfall events significantly depleted O2, and simultaneously increased pulsed N2O emissions. The N+HS treatment exhibited the highest soil N2O concentration (51.9 µL L−1) and lowest O2 concentration (4.3 %), along with high soil moisture levels (24.8 %–32.2 %). Correspondingly, the highest cumulative N2O emissions were observed in the N+HS treatment (117.8 mg m−2), followed by 52.2, 31.9, and 11.0 mg m−2 for the N+LS, N, and CK treatments, respectively. The promotion of N2O production by highly available substrates confirms our hypothesis. Our work contributes to the refinement of global climate models and field mitigation practices, as pulsed N2O emissions from croplands will increase under future extreme rainfall events owing to climate change.
期刊介绍:
Soil & Tillage Research examines the physical, chemical and biological changes in the soil caused by tillage and field traffic. Manuscripts will be considered on aspects of soil science, physics, technology, mechanization and applied engineering for a sustainable balance among productivity, environmental quality and profitability. The following are examples of suitable topics within the scope of the journal of Soil and Tillage Research:
The agricultural and biosystems engineering associated with tillage (including no-tillage, reduced-tillage and direct drilling), irrigation and drainage, crops and crop rotations, fertilization, rehabilitation of mine spoils and processes used to modify soils. Soil change effects on establishment and yield of crops, growth of plants and roots, structure and erosion of soil, cycling of carbon and nutrients, greenhouse gas emissions, leaching, runoff and other processes that affect environmental quality. Characterization or modeling of tillage and field traffic responses, soil, climate, or topographic effects, soil deformation processes, tillage tools, traction devices, energy requirements, economics, surface and subsurface water quality effects, tillage effects on weed, pest and disease control, and their interactions.