Florent J. Dubray, Vladimir Paunovic, Jeroen A. van Bokhoven
{"title":"Optimization of Sustainable Aviation Fuel Production through Experiment-Driven Modeling of Acid-Catalyzed Oligomerization","authors":"Florent J. Dubray, Vladimir Paunovic, Jeroen A. van Bokhoven","doi":"10.1021/acssuschemeng.4c08240","DOIUrl":null,"url":null,"abstract":"To reduce the aviation industry’s greenhouse gas emissions, sustainable aviation fuel (SAF) is needed. Therefore, a methanol-to-SAF process comprising (i) methanol to olefin (MTO), (ii) olefin oligomerization, and (iii) olefin hydrogenation reaction steps is a promising route. The olefin oligomerization step is responsible for resulting SAF properties and needs to be optimized in concert with the previous MTO step. For this purpose, a kinetic model using a total of seven kinetic parameters was designed from a limited number of experimental measurements, allowing us to successfully describe the oligomerization reactivity of various olefin mixtures over an acid catalyst in flow. This inexpensive model predicted optimal reaction conditions and feed compositions, resulting in product mixtures with properties matching those of conventional Jet-A1 aviation fuel. To maximize SAF-range products, a feed composed of C<sub>4</sub> and C<sub>5</sub> olefins is most desirable, while controlled C<sub>3</sub>, C<sub>6</sub>, and C<sub>7</sub> olefin cofeeding and C<sub>4</sub>/C<sub>5</sub> olefin feed ratio are required to finely tune the SAF product composition. This modeling approach allows for efficient process optimization directed toward the synthesis of SAF with controlled properties and composition. Additionally, precise MTO–olefin compositions can be predicted for the optimal production of high-quality SAF, pointing toward the development of an efficient overall methanol-to-SAF process.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"21 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c08240","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To reduce the aviation industry’s greenhouse gas emissions, sustainable aviation fuel (SAF) is needed. Therefore, a methanol-to-SAF process comprising (i) methanol to olefin (MTO), (ii) olefin oligomerization, and (iii) olefin hydrogenation reaction steps is a promising route. The olefin oligomerization step is responsible for resulting SAF properties and needs to be optimized in concert with the previous MTO step. For this purpose, a kinetic model using a total of seven kinetic parameters was designed from a limited number of experimental measurements, allowing us to successfully describe the oligomerization reactivity of various olefin mixtures over an acid catalyst in flow. This inexpensive model predicted optimal reaction conditions and feed compositions, resulting in product mixtures with properties matching those of conventional Jet-A1 aviation fuel. To maximize SAF-range products, a feed composed of C4 and C5 olefins is most desirable, while controlled C3, C6, and C7 olefin cofeeding and C4/C5 olefin feed ratio are required to finely tune the SAF product composition. This modeling approach allows for efficient process optimization directed toward the synthesis of SAF with controlled properties and composition. Additionally, precise MTO–olefin compositions can be predicted for the optimal production of high-quality SAF, pointing toward the development of an efficient overall methanol-to-SAF process.
期刊介绍:
ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment.
The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.