Maximilien Berthet , James Schalkwyk , Onur Çelik , Debdut Sengupta , Ken Fujino , Andreas M. Hein , Luciana Tenorio , Josué Cardoso dos Santos , S. Peter Worden , Philip D. Mauskopf , Yasuyuki Miyazaki , Ikkoh Funaki , Shinjiro Tsuji , Piotr Fil , Kojiro Suzuki
{"title":"Space sails for achieving major space exploration goals: Historical review and future outlook","authors":"Maximilien Berthet , James Schalkwyk , Onur Çelik , Debdut Sengupta , Ken Fujino , Andreas M. Hein , Luciana Tenorio , Josué Cardoso dos Santos , S. Peter Worden , Philip D. Mauskopf , Yasuyuki Miyazaki , Ikkoh Funaki , Shinjiro Tsuji , Piotr Fil , Kojiro Suzuki","doi":"10.1016/j.paerosci.2024.101047","DOIUrl":null,"url":null,"abstract":"<div><div>Space sails are a continuum of lightweight, thin, large-area, deployable technologies which are pushing forward new frontiers in space mobility and exploration. They encompass solar sails, laser-driven sails, drag sails, magnetic sails, electric sails, deployable membrane reflectors, deployable membrane antennas, and solar power sails. Some have been flight tested with operational heritage, while some are concepts planned to reach maturity in the coming decades. The number of flown and planned missions has increased rapidly in the past fifteen years. In this context, it is time to recognise the advantages of space sails for supporting the achievement of a wide range of major space exploration goals. This paper evaluates, for the first time, synergies between the broad spectrum of space sail technologies, and major space exploration ambitions around the world. The study begins by looking to the past, performing a global, historical review of space sails and related enabling technologies. The current state of the art is mapped against this technological heritage. Looking to the future, a review of major space exploration goals in the next decades is conducted, highlighting domains where space sails may offer transformational opportunities. It is hoped that this paper will further the ongoing transition of space sails from a promising flight-proven technology into a go-to component of space mission programme planning.</div></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"150 ","pages":"Article 101047"},"PeriodicalIF":11.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042124000733","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
Space sails are a continuum of lightweight, thin, large-area, deployable technologies which are pushing forward new frontiers in space mobility and exploration. They encompass solar sails, laser-driven sails, drag sails, magnetic sails, electric sails, deployable membrane reflectors, deployable membrane antennas, and solar power sails. Some have been flight tested with operational heritage, while some are concepts planned to reach maturity in the coming decades. The number of flown and planned missions has increased rapidly in the past fifteen years. In this context, it is time to recognise the advantages of space sails for supporting the achievement of a wide range of major space exploration goals. This paper evaluates, for the first time, synergies between the broad spectrum of space sail technologies, and major space exploration ambitions around the world. The study begins by looking to the past, performing a global, historical review of space sails and related enabling technologies. The current state of the art is mapped against this technological heritage. Looking to the future, a review of major space exploration goals in the next decades is conducted, highlighting domains where space sails may offer transformational opportunities. It is hoped that this paper will further the ongoing transition of space sails from a promising flight-proven technology into a go-to component of space mission programme planning.
期刊介绍:
"Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information.
The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.