Weizhu Gui, Panpan Wu, Gang Wang, Shanbo Chen, Shijing Feng
{"title":"Systematic identification and prediction of sex-specific MADS-box genes in Zanthoxylum armatum during flower development","authors":"Weizhu Gui, Panpan Wu, Gang Wang, Shanbo Chen, Shijing Feng","doi":"10.1016/j.scienta.2024.113779","DOIUrl":null,"url":null,"abstract":"<ce:italic>Zanthoxylum armatum</ce:italic>, as a vital economic tree species serving both as a food source and medicinal plant, it stands as one of the key industries supporting rural revitalization in southwestern China, offered significant economic, ecological, and social benefits. In recent years, there has been a significant increase in the occurrence of male flowers being sterile, which has greatly impeded the industrial development of <ce:italic>Z. armatum</ce:italic>. In this study, we investigated the MADS-box gene as a pivotal transcription factor (TFs) influencing flower development. To gain a comprehensive understanding of the evolutionary dynamics of MADS-box genes in <ce:italic>Z. armatum</ce:italic> and establish a solid foundation for future research on this significant gene family, we conducted a genome-wide investigation and analyzed the expression patterns of MADS-box genes. The present study identified a total of 72 MADS-box genes (<ce:italic>ZaMADS1</ce:italic>–<ce:italic>72</ce:italic>) from <ce:italic>Z. armatum</ce:italic> and proposed that the <ce:italic>ZaMADS41</ce:italic> gene is pivotal candidate gene influencing the female-to-male transformation. Phylogenetic analysis revealed that these genes can be categorized into two types: Type I (29 genes) and Type II (43 genes), with the latter exhibiting more complex protein domains and motifs compared to the former. Protein-protein interactions were observed among members of the ZaMADS-box gene family, while their promoter regions contained <ce:italic>cis</ce:italic>-acting elements associated with light response, hormone response, and plant growth and development. Expression profiling during different stages of male and female flower development demonstrated distinct high expression patterns for certain genes specifically in mature male or female flowers. Furthermore, the determination of endogenous hormone content indicated a potential correlation between iP9G and MEJA with sex transformation, while iP9G exhibited a significantly negative association with <ce:italic>ZaMADS33</ce:italic> expression. This comprehensive study on MADS-box genes in <ce:italic>Z. armatum</ce:italic> combined with changes in endogenous hormone levels during male and female flower development, provides a solid theoretical foundation for investigating bud differentiation mechanisms and regulatory techniques in this species.","PeriodicalId":21679,"journal":{"name":"Scientia Horticulturae","volume":"38 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Horticulturae","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.scienta.2024.113779","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Zanthoxylum armatum, as a vital economic tree species serving both as a food source and medicinal plant, it stands as one of the key industries supporting rural revitalization in southwestern China, offered significant economic, ecological, and social benefits. In recent years, there has been a significant increase in the occurrence of male flowers being sterile, which has greatly impeded the industrial development of Z. armatum. In this study, we investigated the MADS-box gene as a pivotal transcription factor (TFs) influencing flower development. To gain a comprehensive understanding of the evolutionary dynamics of MADS-box genes in Z. armatum and establish a solid foundation for future research on this significant gene family, we conducted a genome-wide investigation and analyzed the expression patterns of MADS-box genes. The present study identified a total of 72 MADS-box genes (ZaMADS1–72) from Z. armatum and proposed that the ZaMADS41 gene is pivotal candidate gene influencing the female-to-male transformation. Phylogenetic analysis revealed that these genes can be categorized into two types: Type I (29 genes) and Type II (43 genes), with the latter exhibiting more complex protein domains and motifs compared to the former. Protein-protein interactions were observed among members of the ZaMADS-box gene family, while their promoter regions contained cis-acting elements associated with light response, hormone response, and plant growth and development. Expression profiling during different stages of male and female flower development demonstrated distinct high expression patterns for certain genes specifically in mature male or female flowers. Furthermore, the determination of endogenous hormone content indicated a potential correlation between iP9G and MEJA with sex transformation, while iP9G exhibited a significantly negative association with ZaMADS33 expression. This comprehensive study on MADS-box genes in Z. armatum combined with changes in endogenous hormone levels during male and female flower development, provides a solid theoretical foundation for investigating bud differentiation mechanisms and regulatory techniques in this species.
期刊介绍:
Scientia Horticulturae is an international journal publishing research related to horticultural crops. Articles in the journal deal with open or protected production of vegetables, fruits, edible fungi and ornamentals under temperate, subtropical and tropical conditions. Papers in related areas (biochemistry, micropropagation, soil science, plant breeding, plant physiology, phytopathology, etc.) are considered, if they contain information of direct significance to horticulture. Papers on the technical aspects of horticulture (engineering, crop processing, storage, transport etc.) are accepted for publication only if they relate directly to the living product. In the case of plantation crops, those yielding a product that may be used fresh (e.g. tropical vegetables, citrus, bananas, and other fruits) will be considered, while those papers describing the processing of the product (e.g. rubber, tobacco, and quinine) will not. The scope of the journal includes all horticultural crops but does not include speciality crops such as, medicinal crops or forestry crops, such as bamboo. Basic molecular studies without any direct application in horticulture will not be considered for this journal.