Microstructural Underpinnings of Giant Intrinsic Exchange Bias in Epitaxial NiCo2O4 Thin Films

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2024-11-15 DOI:10.1002/aelm.202400149
Detian Yang, Arjun Subedi, Chao Liu, Haile Ambaye, Valeria Lauter, Peter A. Dowben, Yaohua Liu, Xiaoshan Xu
{"title":"Microstructural Underpinnings of Giant Intrinsic Exchange Bias in Epitaxial NiCo2O4 Thin Films","authors":"Detian Yang, Arjun Subedi, Chao Liu, Haile Ambaye, Valeria Lauter, Peter A. Dowben, Yaohua Liu, Xiaoshan Xu","doi":"10.1002/aelm.202400149","DOIUrl":null,"url":null,"abstract":"Understanding intrinsic exchange bias in nominally single-component ferromagnetic or ferrimagnetic materials is crucial for simplifying related device architectures. However, the mechanisms behind this phenomenon and its tunability remain elusive, which hinders the efforts to achieve unidirectional magnetization for widespread applications. Inspired by the high tunability of ferrimagnetic inverse spinel NiCo<sub>2</sub>O<sub>4</sub>, the origin of intrinsic exchange bias in NiCo<sub>2</sub>O<sub>4</sub> (111) films deposited on Al<sub>2</sub>O<sub>3</sub> (0001) substrates are investigated. The comprehensive characterizations, including electron diffraction, X-ray reflectometry and spectroscopy, and polarized neutron reflectometry, reveal that intrinsic exchange bias in NiCo<sub>2</sub>O<sub>4</sub> (111)/Al<sub>2</sub>O<sub>3</sub> (0001) arises from a reconstructed antiferromagnetic rock-salt Ni<i><sub>x</sub></i>Co<sub>1</sub><i><sub>-x</sub></i>O layer at the interface between the film and the substrate due to a significant structural mismatch. Remarkably, by engineering the interfacial structure under optimal growth conditions, it can achieve exchange bias larger than coercivity, leading to unidirectional magnetization. Such giant intrinsic exchange bias can be utilized for realistic device applications. This work establishes a new material platform based on NiCo<sub>2</sub>O<sub>4</sub>, an emergent spintronics material, to study tunable interfacial magnetic and spintronic properties.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"8 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400149","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding intrinsic exchange bias in nominally single-component ferromagnetic or ferrimagnetic materials is crucial for simplifying related device architectures. However, the mechanisms behind this phenomenon and its tunability remain elusive, which hinders the efforts to achieve unidirectional magnetization for widespread applications. Inspired by the high tunability of ferrimagnetic inverse spinel NiCo2O4, the origin of intrinsic exchange bias in NiCo2O4 (111) films deposited on Al2O3 (0001) substrates are investigated. The comprehensive characterizations, including electron diffraction, X-ray reflectometry and spectroscopy, and polarized neutron reflectometry, reveal that intrinsic exchange bias in NiCo2O4 (111)/Al2O3 (0001) arises from a reconstructed antiferromagnetic rock-salt NixCo1-xO layer at the interface between the film and the substrate due to a significant structural mismatch. Remarkably, by engineering the interfacial structure under optimal growth conditions, it can achieve exchange bias larger than coercivity, leading to unidirectional magnetization. Such giant intrinsic exchange bias can be utilized for realistic device applications. This work establishes a new material platform based on NiCo2O4, an emergent spintronics material, to study tunable interfacial magnetic and spintronic properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外延镍钴氧化物薄膜中巨型本征交换偏压的微观结构基础
了解名义上单组分铁磁性或铁磁性材料中的内在交换偏压对于简化相关设备架构至关重要。然而,这种现象背后的机制及其可调性仍然难以捉摸,这阻碍了实现单向磁化以广泛应用的努力。受反向尖晶石镍钴氧化物铁磁性高可调性的启发,我们研究了沉积在 Al2O3 (0001) 基底上的镍钴氧化物 (111) 薄膜的本征交换偏压的起源。包括电子衍射、X 射线反射仪和光谱仪以及偏振中子反射仪在内的综合表征结果表明,NiCo2O4 (111)/Al2O3 (0001) 薄膜中的本征交换偏压源于薄膜与基底之间界面上的重构反铁磁性岩盐 NixCo1-xO 层,这是由于显著的结构失配造成的。值得注意的是,通过在最佳生长条件下对界面结构进行设计,它可以获得大于矫顽力的交换偏置,从而导致单向磁化。这种巨大的固有交换偏压可用于实际器件应用。这项工作建立了一个基于新兴自旋电子材料 NiCo2O4 的新材料平台,用于研究可调的界面磁性和自旋电子特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Single-Cell Membrane Potential Stimulation and Recording by an Electrolyte-Gated Organic Field-Effect Transistor 2D α-In2Se3 Flakes for High Frequency Tunable and Switchable Film Bulk Acoustic Wave Resonators Aqueous Ammonia Sensor with Neuromorphic Detection 3D Nano Hafnium-Based Ferroelectric Memory Vertical Array for High-Density and High-Reliability Logic-In-Memory Application Effect of Inhomogeneous Temperature in Chip-Scale Infrared Thermal Sources: A Revisited Blackbody Radiation Formula with Experimental Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1