{"title":"A biocompatible fluorescent probe for endogenous hydrogen sulfide detection and imaging","authors":"Xitian Zhu , Huijia Chen , Fang Ke","doi":"10.1016/j.ab.2024.115718","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen sulfide (H<sub>2</sub>S) acts as a messenger molecule and can mediate a variety of physiological functions. Conventional methods are seldom used to detect endogenous H<sub>2</sub>S and present some difficulties in selective and accurate detection. Reaction-based recognition of endogenous H<sub>2</sub>S by organic small molecule probes with good specificity and biocompatibility. To address this challenge, we developed a novel H<sub>2</sub>S fluorescent probe 4-(2-(6-hydroxy-2-naphthyl) ethyl)-1-methylpyridinium (<strong>DSNP</strong>) that triggers a thiolysis reaction through a strong electron withdrawing group, releasing a fluorescent molecule. The simple probe <strong>DSNP</strong> not only have good selectivity, large Stokes shifts and biocompatibility, but also demonstrated a detection limit as low as 28.4 nM and reaction times as quick as 30 min. Moreover, it has been successfully applied to imaging intracellular H<sub>2</sub>S in myeloma cells and zebrafish. This study opens new insights to help push this probe forward for its applicability for detailed H<sub>2</sub>S localization studies in osteosarcoma.</div></div>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":"697 ","pages":"Article 115718"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003269724002628","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen sulfide (H2S) acts as a messenger molecule and can mediate a variety of physiological functions. Conventional methods are seldom used to detect endogenous H2S and present some difficulties in selective and accurate detection. Reaction-based recognition of endogenous H2S by organic small molecule probes with good specificity and biocompatibility. To address this challenge, we developed a novel H2S fluorescent probe 4-(2-(6-hydroxy-2-naphthyl) ethyl)-1-methylpyridinium (DSNP) that triggers a thiolysis reaction through a strong electron withdrawing group, releasing a fluorescent molecule. The simple probe DSNP not only have good selectivity, large Stokes shifts and biocompatibility, but also demonstrated a detection limit as low as 28.4 nM and reaction times as quick as 30 min. Moreover, it has been successfully applied to imaging intracellular H2S in myeloma cells and zebrafish. This study opens new insights to help push this probe forward for its applicability for detailed H2S localization studies in osteosarcoma.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.