Combined oxygen and glucose oscillations distinctly change the transcriptional and physiological state of Escherichia coli

IF 5.7 2区 生物学 Microbial Biotechnology Pub Date : 2024-11-15 DOI:10.1111/1751-7915.70051
Jonas Bafna-Rührer, Jean V. Orth, Suresh Sudarsan
{"title":"Combined oxygen and glucose oscillations distinctly change the transcriptional and physiological state of Escherichia coli","authors":"Jonas Bafna-Rührer,&nbsp;Jean V. Orth,&nbsp;Suresh Sudarsan","doi":"10.1111/1751-7915.70051","DOIUrl":null,"url":null,"abstract":"<p><i>Escherichia coli</i>, a common microbial host for industrial bioproduction, experiences a highly dynamic environment in industrial-scale bioreactors due to significant glucose and oxygen gradients. In this study, we mimic the combined gradients of glucose and oxygen in high-throughput bioreactors to study the transcriptional response of <i>E. coli</i> to industrial-scale conditions. Under oscillating oxygen conditions, <i>E. coli</i> formed less biomass and accumulated the anaerobic by-product acetate. With respect to oxygen-responsive genes, we found that genes of the TCA cycle and of different electron transport chain complexes were differentially expressed. A global analysis of the expression data revealed that oxygen oscillations had caused a transition towards a catabolite-repressed state and upregulation of several stress-related regulatory programs. Interestingly, the transcriptional changes persisted after oxygen limitation stopped. In contrast, the changes we observed due to glucose starvation, such as induction of the stringent response, were primarily transient. Most importantly, we found that effects of combined oxygen and glucose oscillations were distinct from the ones of oxygen and substrate oscillations alone, suggesting an important interplay between the different metabolic regimes in industrial-scale bioreactors.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"17 11","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568247/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70051","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Escherichia coli, a common microbial host for industrial bioproduction, experiences a highly dynamic environment in industrial-scale bioreactors due to significant glucose and oxygen gradients. In this study, we mimic the combined gradients of glucose and oxygen in high-throughput bioreactors to study the transcriptional response of E. coli to industrial-scale conditions. Under oscillating oxygen conditions, E. coli formed less biomass and accumulated the anaerobic by-product acetate. With respect to oxygen-responsive genes, we found that genes of the TCA cycle and of different electron transport chain complexes were differentially expressed. A global analysis of the expression data revealed that oxygen oscillations had caused a transition towards a catabolite-repressed state and upregulation of several stress-related regulatory programs. Interestingly, the transcriptional changes persisted after oxygen limitation stopped. In contrast, the changes we observed due to glucose starvation, such as induction of the stringent response, were primarily transient. Most importantly, we found that effects of combined oxygen and glucose oscillations were distinct from the ones of oxygen and substrate oscillations alone, suggesting an important interplay between the different metabolic regimes in industrial-scale bioreactors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧和葡萄糖的联合振荡明显改变了大肠杆菌的转录和生理状态。
大肠杆菌是工业生物生产中常见的微生物宿主,在工业规模的生物反应器中,由于葡萄糖和氧气梯度显著,大肠杆菌会经历一个高度动态的环境。在这项研究中,我们模拟了高通量生物反应器中葡萄糖和氧气的综合梯度,以研究大肠杆菌对工业规模条件的转录反应。在振荡氧条件下,大肠杆菌形成的生物量减少,并积累了厌氧副产物醋酸盐。在氧响应基因方面,我们发现 TCA 循环基因和不同电子传递链复合物基因的表达存在差异。对表达数据的总体分析表明,氧振荡导致向分解石抑制状态的转变,并上调了几个与应激相关的调控程序。有趣的是,转录变化在氧限制停止后仍然存在。相比之下,我们观察到的葡萄糖饥饿引起的变化(如诱导严格反应)主要是短暂的。最重要的是,我们发现氧气和葡萄糖联合振荡的影响不同于氧气和底物单独振荡的影响,这表明在工业规模的生物反应器中,不同代谢机制之间存在着重要的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
期刊最新文献
New insights for the development of efficient DNA vaccines Bacterial Catabolism of Phthalates With Estrogenic Activity Used as Plasticisers in the Manufacture of Plastic Products Combined oxygen and glucose oscillations distinctly change the transcriptional and physiological state of Escherichia coli Design, potential and limitations of conjugation-based antibacterial strategies Microbial biosensors for diagnostics, surveillance and epidemiology: Today's achievements and tomorrow's prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1