Yuting Lin , Haibo Xu , Kaitao Wang , Xinye Wang , Xinyu Wu , Zhiyi Tang , Yuxi Lin , Chengshui Chen , Beibei Wang
{"title":"Transcriptomics integrated with metabolomics reveals the effect of benzo[a]pyrene exposure on acute lung injury","authors":"Yuting Lin , Haibo Xu , Kaitao Wang , Xinye Wang , Xinyu Wu , Zhiyi Tang , Yuxi Lin , Chengshui Chen , Beibei Wang","doi":"10.1016/j.ecoenv.2024.117323","DOIUrl":null,"url":null,"abstract":"<div><div>Benzo[<em>a</em>]pyrene (BaP), a major harmful component in PM2.5, is widely present in automobile emissions and atmospheric pollution. BaP exposure directly targets the lungs, often resulting in acute lung injury (ALI). However, comprehensive metabolic and transcriptomic profiles related to BaP-induced ALI remain unexplored. To simulate BaP-induced lung injury, we performed intratracheal instillation of BaP. To investigate how BaP exposure affects lung transcriptome and metabolic profiles, we used RNA sequencing and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). We aimed to understand the underlying mechanisms of BaP-induced lung damage. Metabolomics analyses indicated that in BaP-exposed animals, most fatty acids, carbohydrates, and steroids were significantly reduced, whereas most amino acids and organic acids remained unchanged. Analysis of transcriptomics data showed that fatty acid synthesis decreased and fatty acid oxidation increased, suggesting that lipid breakdown occurs after BaP exposure. Additionally, there were increases in oxidative stress system activity and decreases in immune system function. Finally, BaP altered mitochondrial, lipid, immune system, and fatty acid pathways, as indicated by pathway enrichment analyses. These results show that BaP substantially affects metabolic and inflammatory responses, enhancing the broader understanding of the underlying mechanisms of ALI after BaP exposure.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"288 ","pages":"Article 117323"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S014765132401399X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Benzo[a]pyrene (BaP), a major harmful component in PM2.5, is widely present in automobile emissions and atmospheric pollution. BaP exposure directly targets the lungs, often resulting in acute lung injury (ALI). However, comprehensive metabolic and transcriptomic profiles related to BaP-induced ALI remain unexplored. To simulate BaP-induced lung injury, we performed intratracheal instillation of BaP. To investigate how BaP exposure affects lung transcriptome and metabolic profiles, we used RNA sequencing and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). We aimed to understand the underlying mechanisms of BaP-induced lung damage. Metabolomics analyses indicated that in BaP-exposed animals, most fatty acids, carbohydrates, and steroids were significantly reduced, whereas most amino acids and organic acids remained unchanged. Analysis of transcriptomics data showed that fatty acid synthesis decreased and fatty acid oxidation increased, suggesting that lipid breakdown occurs after BaP exposure. Additionally, there were increases in oxidative stress system activity and decreases in immune system function. Finally, BaP altered mitochondrial, lipid, immune system, and fatty acid pathways, as indicated by pathway enrichment analyses. These results show that BaP substantially affects metabolic and inflammatory responses, enhancing the broader understanding of the underlying mechanisms of ALI after BaP exposure.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.