{"title":"ACBP/DBI neutralization for the experimental treatment of fatty liver disease.","authors":"Omar Motiño, Flavia Lambertucci, Adrien Joseph, Sylvère Durand, Gerasimos Anagnostopoulos, Sijing Li, Vincent Carbonnier, Uxía Nogueira-Recalde, Léa Montégut, Hui Chen, Fanny Aprahamian, Nitharsshini Nirmalathasan, Maria Chiara Maiuri, Federico Pietrocola, Dominique Valla, Cédric Laouénan, Jean-François Gautier, Laurent Castera, Isabelle Martins, Guido Kroemer","doi":"10.1038/s41418-024-01410-6","DOIUrl":null,"url":null,"abstract":"<p><p>Acyl-CoA binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular checkpoint of autophagy. Here, we report that patients with histologically confirmed metabolic-associated steatohepatitis (MASH) or liver fibrosis exhibit elevated levels of circulating ACBP/DBI protein as compared to non-affected controls. Plasma ACBP/DBI strongly correlated with the NAFLD and FIB4 scores in patients, and these correlations were independent of age and body mass index. We studied the capacity of a monoclonal antibody (mAb) neutralizing mouse ACBP/DBI to combat active liver disease in several mouse models, in which steatohepatitis had been induced by four different protocols, namely, (i) methionine/choline-deficient diet, (ii) Western style diet (WD) alone, (iii) WD combined with the hepatotoxic agent CCl<sub>4</sub>, and (iv) a combination of CCl<sub>4</sub> injections and oral ethanol challenge. Injections of anti-ACBP/DBI mAb attenuated histological, enzymological, metabolomic and transcriptomic signs of liver damage in these four models, hence halting or reducing the progression of non-alcoholic and alcoholic liver disease. Steatosis, inflammation, ballooning and fibrosis responded to ACBP/DBI inhibition at the preclinical level. Altogether, these findings support a causal role of ACBP/DBI in MASH and liver fibrosis, as well as the possibility to therapeutically target ACBP/DBI.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":" ","pages":""},"PeriodicalIF":13.7000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death and Differentiation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41418-024-01410-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acyl-CoA binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular checkpoint of autophagy. Here, we report that patients with histologically confirmed metabolic-associated steatohepatitis (MASH) or liver fibrosis exhibit elevated levels of circulating ACBP/DBI protein as compared to non-affected controls. Plasma ACBP/DBI strongly correlated with the NAFLD and FIB4 scores in patients, and these correlations were independent of age and body mass index. We studied the capacity of a monoclonal antibody (mAb) neutralizing mouse ACBP/DBI to combat active liver disease in several mouse models, in which steatohepatitis had been induced by four different protocols, namely, (i) methionine/choline-deficient diet, (ii) Western style diet (WD) alone, (iii) WD combined with the hepatotoxic agent CCl4, and (iv) a combination of CCl4 injections and oral ethanol challenge. Injections of anti-ACBP/DBI mAb attenuated histological, enzymological, metabolomic and transcriptomic signs of liver damage in these four models, hence halting or reducing the progression of non-alcoholic and alcoholic liver disease. Steatosis, inflammation, ballooning and fibrosis responded to ACBP/DBI inhibition at the preclinical level. Altogether, these findings support a causal role of ACBP/DBI in MASH and liver fibrosis, as well as the possibility to therapeutically target ACBP/DBI.
期刊介绍:
Mission, vision and values of Cell Death & Differentiation:
To devote itself to scientific excellence in the field of cell biology, molecular biology, and biochemistry of cell death and disease.
To provide a unified forum for scientists and clinical researchers
It is committed to the rapid publication of high quality original papers relating to these subjects, together with topical, usually solicited, reviews, meeting reports, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.