首页 > 最新文献

Cell Death and Differentiation最新文献

英文 中文
Small protein ERSP encoded by LINC02870 promotes triple negative breast cancer progression via IRE1α/XBP1s activation
IF 12.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-11 DOI: 10.1038/s41418-025-01443-5
Xiaolu Wang, Qianqian Wang, Hong Wang, Guodi Cai, Yana An, Peiqing Liu, Huihao Zhou, Hong-Wu Chen, Shufeng Ji, Jiantao Ye, Junjian Wang

Clinical treatment options for triple-negative breast cancer (TNBC) are currently limited to chemotherapy because of a lack of effective therapeutic targets. Recent evidence suggests that long noncoding RNAs (lncRNAs) encode bioactive peptides or proteins, thereby playing noncanonical yet significant roles in regulating cellular processes. However, the potential of lncRNA-translated products in cancer progression remains largely unknown. In this study, we identified a previously undocumented small protein encoded by the lncRNA LINC02870. This protein is localized at the endoplasmic reticulum (ER) and participates in ER stress, thus, we named it the endoplasmic reticulum stress protein (ERSP). ERSP was highly expressed in TNBC tissues, and elevated LINC02870 content was correlated with poor prognosis in TNBC patients. Loss of ERSP inhibited TNBC growth and metastasis both in vitro and in vivo. The pro-oncogenic effects of ERSP could be attributed to its selective activation of the IRE1α/XBP1s branch. ERSP enhances the unfolded protein response (UPR) by interacting with XBP1s, facilitating the nuclear accumulation of XBP1s, thereby promoting the expression of ER stress-related genes. These findings highlight the regulatory role of the lncRNA-encoded protein ERSP in ER stress and suggest that it is a potential therapeutic target for TNBC.

{"title":"Small protein ERSP encoded by LINC02870 promotes triple negative breast cancer progression via IRE1α/XBP1s activation","authors":"Xiaolu Wang, Qianqian Wang, Hong Wang, Guodi Cai, Yana An, Peiqing Liu, Huihao Zhou, Hong-Wu Chen, Shufeng Ji, Jiantao Ye, Junjian Wang","doi":"10.1038/s41418-025-01443-5","DOIUrl":"https://doi.org/10.1038/s41418-025-01443-5","url":null,"abstract":"<p>Clinical treatment options for triple-negative breast cancer (TNBC) are currently limited to chemotherapy because of a lack of effective therapeutic targets. Recent evidence suggests that long noncoding RNAs (lncRNAs) encode bioactive peptides or proteins, thereby playing noncanonical yet significant roles in regulating cellular processes. However, the potential of lncRNA-translated products in cancer progression remains largely unknown. In this study, we identified a previously undocumented small protein encoded by the lncRNA <i>LINC02870</i>. This protein is localized at the endoplasmic reticulum (ER) and participates in ER stress, thus, we named it the endoplasmic reticulum stress protein (ERSP). ERSP was highly expressed in TNBC tissues, and elevated <i>LINC02870</i> content was correlated with poor prognosis in TNBC patients. Loss of ERSP inhibited TNBC growth and metastasis both in vitro and in vivo. The pro-oncogenic effects of ERSP could be attributed to its selective activation of the IRE1α/XBP1s branch. ERSP enhances the unfolded protein response (UPR) by interacting with XBP1s, facilitating the nuclear accumulation of XBP1s, thereby promoting the expression of ER stress-related genes. These findings highlight the regulatory role of the lncRNA-encoded protein ERSP in ER stress and suggest that it is a potential therapeutic target for TNBC.</p><figure></figure>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"49 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142967788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanisms of regulated cell death during plant infection by the rice blast fungus Magnaporthe oryzae
IF 12.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-10 DOI: 10.1038/s41418-024-01442-y
Matthew R. Wengler, Nicholas J. Talbot

Fungi are the most important group of plant pathogens, responsible for many of the world’s most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus Magnaporthe oryzae, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally. M. oryzae develops a pressurized dome-shaped appressorium that uses mechanical force to rupture the rice leaf cuticle. Appressoria form in response to the hydrophobic leaf surface, which requires the Pmk1 MAP kinase signalling pathway, coupled to a series of cell-cycle checkpoints that are necessary for regulated cell death of the fungal conidium and development of a functionally competent appressorium. Conidial cell death requires autophagy, which occurs within each cell of the spore, and is regulated by components of the cargo-independent autophagy pathway. This results in trafficking of the contents of all three cells to the incipient appressorium, which develops enormous turgor of up to 8.0 MPa, due to glycerol accumulation, and differentiates a thickened, melanin-lined cell wall. The appressorium then re-polarizes, re-orienting the actin and microtubule cytoskeleton to enable development of a penetration peg in a perpendicular orientation, that ruptures the leaf surface using mechanical force. Re-polarization requires septin GTPases which form a ring structure at the base of the appressorium, which delineates the point of plant infection, and acts as a scaffold for actin re-localization, enhances cortical rigidity, and forms a lateral diffusion barrier to focus polarity determinants that regulate penetration peg formation. Here we review the mechanism of regulated cell death in M. oryzae, which requires autophagy but may also involve ferroptosis. We critically evaluate the role of regulated cell death in appressorium morphogenesis and examine how it is initiated and regulated, both temporally and spatially, during plant infection. We then use this synopsis to present a testable model for control of regulated cell death during appressorium-dependent plant infection by the blast fungus.

{"title":"Mechanisms of regulated cell death during plant infection by the rice blast fungus Magnaporthe oryzae","authors":"Matthew R. Wengler, Nicholas J. Talbot","doi":"10.1038/s41418-024-01442-y","DOIUrl":"https://doi.org/10.1038/s41418-024-01442-y","url":null,"abstract":"<p>Fungi are the most important group of plant pathogens, responsible for many of the world’s most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus <i>Magnaporthe oryzae</i>, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally. <i>M. oryzae</i> develops a pressurized dome-shaped appressorium that uses mechanical force to rupture the rice leaf cuticle. Appressoria form in response to the hydrophobic leaf surface, which requires the Pmk1 MAP kinase signalling pathway, coupled to a series of cell-cycle checkpoints that are necessary for regulated cell death of the fungal conidium and development of a functionally competent appressorium. Conidial cell death requires autophagy, which occurs within each cell of the spore, and is regulated by components of the cargo-independent autophagy pathway. This results in trafficking of the contents of all three cells to the incipient appressorium, which develops enormous turgor of up to 8.0 MPa, due to glycerol accumulation, and differentiates a thickened, melanin-lined cell wall. The appressorium then re-polarizes, re-orienting the actin and microtubule cytoskeleton to enable development of a penetration peg in a perpendicular orientation, that ruptures the leaf surface using mechanical force. Re-polarization requires septin GTPases which form a ring structure at the base of the appressorium, which delineates the point of plant infection, and acts as a scaffold for actin re-localization, enhances cortical rigidity, and forms a lateral diffusion barrier to focus polarity determinants that regulate penetration peg formation. Here we review the mechanism of regulated cell death in <i>M. oryzae</i>, which requires autophagy but may also involve ferroptosis. We critically evaluate the role of regulated cell death in appressorium morphogenesis and examine how it is initiated and regulated, both temporally and spatially, during plant infection. We then use this synopsis to present a testable model for control of regulated cell death during appressorium-dependent plant infection by the blast fungus.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"2 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tenascin-C promotes bone regeneration via inflammatory macrophages
IF 12.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-10 DOI: 10.1038/s41418-024-01429-9
Qian Ren, Wenhui Xing, Bo Jiang, Heng Feng, Xuye Hu, Jinlong Suo, Lijun Wang, Weiguo Zou

During the early stage of tissue injury, macrophages play important roles in the activation of stem cells for further regeneration. However, the regulation of macrophages during bone regeneration remains unclear. Here, the extracellular matrix (ECM) tenascin-C (TNC) is found to express in the periosteum and recruit inflammatory macrophages. TNC-deficiency in the periosteum delays bone repair. Transplantation of macrophages derived from injured periosteum is able to rescue the decreased skeletal stem cells and impaired bone regeneration caused by TNC deficiency. The cell communication analysis identifies ITGA7 as a TNC receptor contributing to the recruitment of inflammatory macrophages. TNC expression declines in aged mice and the exogenous delivery of TNC significantly promotes bone regeneration after aging through the recruitment of macrophages. Taken together, this study reveals the regulation of macrophage recruitment and its function in the activation of skeletal stem cells after bone injury, providing a strategy to accelerate bone regeneration by TNC delivery.

{"title":"Tenascin-C promotes bone regeneration via inflammatory macrophages","authors":"Qian Ren, Wenhui Xing, Bo Jiang, Heng Feng, Xuye Hu, Jinlong Suo, Lijun Wang, Weiguo Zou","doi":"10.1038/s41418-024-01429-9","DOIUrl":"https://doi.org/10.1038/s41418-024-01429-9","url":null,"abstract":"<p>During the early stage of tissue injury, macrophages play important roles in the activation of stem cells for further regeneration. However, the regulation of macrophages during bone regeneration remains unclear. Here, the extracellular matrix (ECM) tenascin-C (TNC) is found to express in the periosteum and recruit inflammatory macrophages. TNC-deficiency in the periosteum delays bone repair. Transplantation of macrophages derived from injured periosteum is able to rescue the decreased skeletal stem cells and impaired bone regeneration caused by TNC deficiency. The cell communication analysis identifies ITGA7 as a TNC receptor contributing to the recruitment of inflammatory macrophages. TNC expression declines in aged mice and the exogenous delivery of TNC significantly promotes bone regeneration after aging through the recruitment of macrophages. Taken together, this study reveals the regulation of macrophage recruitment and its function in the activation of skeletal stem cells after bone injury, providing a strategy to accelerate bone regeneration by TNC delivery.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"24 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142939923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inactivation of GSK3β by Ser389 phosphorylation prevents thymocyte necroptosis and impacts Tcr repertoire diversity
IF 12.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-08 DOI: 10.1038/s41418-024-01441-z
Felipe Valença-Pereira, Ryan M. Sheridan, Kent A. Riemondy, Tina Thornton, Qian Fang, Brad Barret, Gabriela Paludo, Claudia Thompson, Patrick Collins, Mario Santiago, Eugene Oltz, Mercedes Rincon

The assembly of Tcrb and Tcra genes require double negative (DN) thymocytes to undergo multiple rounds of programmed DNA double-strand breaks (DSBs), followed by their efficient repair. However, mechanisms governing cell cycle checkpoints and specific survival pathways during the repair process remain unclear. Here, we report high-resolution scRNA-seq analyses of individually sorted mouse DN3 and DN4 thymocytes, which reveals a G2M cell cycle checkpoint, in addition to the known G1 checkpoint, during Tcrb and Tcra recombination. We also show that inactivation of GSK3β by phosphorylation on Ser389 is essential for DN3/DN4 thymocytes to survive while being stalled at the G1 and G2/M checkpoints. GSK3β promotes death by necroptosis, but not by apoptosis, of DN3/DN4 thymocytes during V(D)J recombination. Failure to inactivate GSK3β in DN3 thymocytes alters the Tcrb gene repertoire primarily through Trbv segment utilization. In addition, preferential recombination of proximal V segments in Tcra depends on GSK3β inactivation. Our study identifies a unique thymocyte survival pathway, enabling them to undergo cell cycle checkpoints for DNA repair during V(D)J recombination of Tcrb and Tcra genes. Thymocyte survival during cell cycle checkpoints for V(D)J recombination DNA repair determines TCRα/β repertoire.

{"title":"Inactivation of GSK3β by Ser389 phosphorylation prevents thymocyte necroptosis and impacts Tcr repertoire diversity","authors":"Felipe Valença-Pereira, Ryan M. Sheridan, Kent A. Riemondy, Tina Thornton, Qian Fang, Brad Barret, Gabriela Paludo, Claudia Thompson, Patrick Collins, Mario Santiago, Eugene Oltz, Mercedes Rincon","doi":"10.1038/s41418-024-01441-z","DOIUrl":"https://doi.org/10.1038/s41418-024-01441-z","url":null,"abstract":"<p>The assembly of <i>Tcrb</i> and <i>Tcra</i> genes require double negative (DN) thymocytes to undergo multiple rounds of programmed DNA double-strand breaks (DSBs), followed by their efficient repair. However, mechanisms governing cell cycle checkpoints and specific survival pathways during the repair process remain unclear. Here, we report high-resolution scRNA-seq analyses of individually sorted mouse DN3 and DN4 thymocytes, which reveals a G2M cell cycle checkpoint, in addition to the known G1 checkpoint, during <i>Tcrb</i> and <i>Tcra</i> recombination. We also show that inactivation of GSK3β by phosphorylation on Ser<sup>389</sup> is essential for DN3/DN4 thymocytes to survive while being stalled at the G1 and G2/M checkpoints. GSK3β promotes death by necroptosis, but not by apoptosis, of DN3/DN4 thymocytes during V(D)J recombination. Failure to inactivate GSK3β in DN3 thymocytes alters the <i>Tcrb</i> gene repertoire primarily through <i>Trbv</i> segment utilization. In addition, preferential recombination of proximal V segments in <i>Tcra</i> depends on GSK3β inactivation. Our study identifies a unique thymocyte survival pathway, enabling them to undergo cell cycle checkpoints for DNA repair during V(D)J recombination of <i>Tcrb</i> and <i>Tcra</i> genes. Thymocyte survival during cell cycle checkpoints for V(D)J recombination DNA repair determines TCRα/β repertoire.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"2 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142937021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Apoptotic priming in senescence predicts specific senolysis by quantitative analysis of mitochondrial dependencies
IF 12.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-06 DOI: 10.1038/s41418-024-01431-1
Julie A. MacDonald, Gary A. Bradshaw, Fleur Jochems, René Bernards, Anthony Letai

Cellular senescence contributes to a variety of pathologies associated with aging and is implicated as a cellular state in which cancer cells can survive treatment. Reported senolytic drug treatments act through varying molecular mechanisms, but heterogeneous efficacy across the diverse contexts of cellular senescence indicates a need for predictive biomarkers of senolytic activity. Using multi-parametric analyses of commonly reported molecular features of the senescent phenotype, we assayed a variety of models, including malignant and nonmalignant cells, using several triggers of senescence induction and found little univariate predictive power of these traditional senescence markers to identify senolytic drug sensitivity. We sought to identify novel drug targets in senescent cells that were insensitive to frequently implemented senolytic therapies, such as Navitoclax (ABT-263), using quantitative mass spectrometry to measure changes in the senescent proteome, compared to cells which acquire an acute sensitivity to ABT-263 with senescence induction. Inhibition of the antioxidant GPX4 or the Bcl-2 family member MCL-1 using small molecule compounds in combination with ABT-263 significantly increased the induction of apoptosis in some, but not all, previously insensitive senescent cells. We then asked if we could use BH3 profiling to measure differences in mitochondrial apoptotic priming in these models of cellular senescence and predict sensitivity to the senolytics ABT-263 or the combination of dasatinib and quercetin (D + Q). We found, despite being significantly less primed for apoptosis overall, the dependence of senescent mitochondria on BCL-XL was significantly correlated to senescent cell killing by both ABT-263 and D + Q, despite no significant changes in the gene or protein expression of BCL-XL. However, our data caution against broad classification of drugs as globally senolytic and instead provide impetus for context-specific senolytic targets and propose BH3 profiling as an effective predictive biomarker.

{"title":"Apoptotic priming in senescence predicts specific senolysis by quantitative analysis of mitochondrial dependencies","authors":"Julie A. MacDonald, Gary A. Bradshaw, Fleur Jochems, René Bernards, Anthony Letai","doi":"10.1038/s41418-024-01431-1","DOIUrl":"https://doi.org/10.1038/s41418-024-01431-1","url":null,"abstract":"<p>Cellular senescence contributes to a variety of pathologies associated with aging and is implicated as a cellular state in which cancer cells can survive treatment. Reported senolytic drug treatments act through varying molecular mechanisms, but heterogeneous efficacy across the diverse contexts of cellular senescence indicates a need for predictive biomarkers of senolytic activity. Using multi-parametric analyses of commonly reported molecular features of the senescent phenotype, we assayed a variety of models, including malignant and nonmalignant cells, using several triggers of senescence induction and found little univariate predictive power of these traditional senescence markers to identify senolytic drug sensitivity. We sought to identify novel drug targets in senescent cells that were insensitive to frequently implemented senolytic therapies, such as Navitoclax (ABT-263), using quantitative mass spectrometry to measure changes in the senescent proteome, compared to cells which acquire an acute sensitivity to ABT-263 with senescence induction. Inhibition of the antioxidant GPX4 or the Bcl-2 family member MCL-1 using small molecule compounds in combination with ABT-263 significantly increased the induction of apoptosis in some, but not all, previously insensitive senescent cells. We then asked if we could use BH3 profiling to measure differences in mitochondrial apoptotic priming in these models of cellular senescence and predict sensitivity to the senolytics ABT-263 or the combination of dasatinib and quercetin (D + Q). We found, despite being significantly less primed for apoptosis overall, the dependence of senescent mitochondria on BCL-XL was significantly correlated to senescent cell killing by both ABT-263 and D + Q, despite no significant changes in the gene or protein expression of BCL-XL. However, our data caution against broad classification of drugs as globally senolytic and instead provide impetus for context-specific senolytic targets and propose BH3 profiling as an effective predictive biomarker.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"125 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SENP3 inhibition suppresses hepatocellular carcinoma progression and improves the efficacy of anti-PD-1 immunotherapy
IF 12.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-04 DOI: 10.1038/s41418-024-01437-9
Peng Wang, Jiannan Qiu, Yuan Fang, Songmao Li, Kua Liu, Yin Cao, Guang Zhang, Zhongxia Wang, Xiaosong Gu, Junhua Wu, Chunping Jiang

The importance of SUMOylation in tumorigenesis has received increasing attention, and research on therapeutic agents targeting this pathway has progressed. However, the potential function of SUMOylation during hepatocellular carcinoma (HCC) progression and the underlying molecular mechanisms remain unclear. Here, we identified that SUMO-Specific Peptidase 3 (SENP3) was upregulated in HCC tissues and correlated with a poor prognosis. Multiple functional experiments demonstrated that SENP3 promotes the malignant phenotype of HCC cells. Mechanistically, SENP3 deSUMOylates RACK1 and subsequently increases its stability and interaction with PKCβII, thereby promoting eIF4E phosphorylation and translation of oncogenes, including Bcl2, Snail and Cyclin D1. Additionally, tumor-intrinsic SENP3 promotes the infiltration of tumor-associated macrophages (TAMs) while reducing cytotoxic T cells to facilitate immune evasion. Mechanistically, SENP3 promotes translation of CCL20 via the RACK1 /eIF4E axis. Liver-specific knockdown of SENP3 significantly inhibits liver tumorigenesis in a chemically induced HCC model. SENP3 inhibition enhances the therapeutic efficacy of PD-1 blockade in an HCC mouse model. Collectively, SENP3 plays cell-intrinsic and cell-extrinsic roles in HCC progression and immune evasion by modulating oncogene and cytokine translation. Targeting SENP3 is a novel therapeutic target for boosting HCC responsiveness to immunotherapy.

{"title":"SENP3 inhibition suppresses hepatocellular carcinoma progression and improves the efficacy of anti-PD-1 immunotherapy","authors":"Peng Wang, Jiannan Qiu, Yuan Fang, Songmao Li, Kua Liu, Yin Cao, Guang Zhang, Zhongxia Wang, Xiaosong Gu, Junhua Wu, Chunping Jiang","doi":"10.1038/s41418-024-01437-9","DOIUrl":"https://doi.org/10.1038/s41418-024-01437-9","url":null,"abstract":"<p>The importance of SUMOylation in tumorigenesis has received increasing attention, and research on therapeutic agents targeting this pathway has progressed. However, the potential function of SUMOylation during hepatocellular carcinoma (HCC) progression and the underlying molecular mechanisms remain unclear. Here, we identified that SUMO-Specific Peptidase 3 (SENP3) was upregulated in HCC tissues and correlated with a poor prognosis. Multiple functional experiments demonstrated that SENP3 promotes the malignant phenotype of HCC cells. Mechanistically, SENP3 deSUMOylates RACK1 and subsequently increases its stability and interaction with PKCβII, thereby promoting eIF4E phosphorylation and translation of oncogenes, including Bcl2, Snail and Cyclin D1. Additionally, tumor-intrinsic SENP3 promotes the infiltration of tumor-associated macrophages (TAMs) while reducing cytotoxic T cells to facilitate immune evasion. Mechanistically, SENP3 promotes translation of CCL20 via the RACK1 /eIF4E axis. Liver-specific knockdown of SENP3 significantly inhibits liver tumorigenesis in a chemically induced HCC model. SENP3 inhibition enhances the therapeutic efficacy of PD-1 blockade in an HCC mouse model. Collectively, SENP3 plays cell-intrinsic and cell-extrinsic roles in HCC progression and immune evasion by modulating oncogene and cytokine translation. Targeting SENP3 is a novel therapeutic target for boosting HCC responsiveness to immunotherapy.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"17 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142925110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ABCF1-K430-Lactylation promotes HCC malignant progression via transcriptional activation of HIF1 signaling pathway
IF 12.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-01-03 DOI: 10.1038/s41418-024-01436-w
Han Hong, Hexu Han, Lei Wang, Wen Cao, Minjie Hu, Jindong Li, Jiawei Wang, Yijin Yang, XiaoYong Xu, Gaochao Li, Zixiang Zhang, Changhe Zhang, Minhui Xu, Honggang Wang, Qiang Wang, Yin Yuan

Lysine lactylation plays critical roles in various diseases, including cancer. Our previous study showed that lactylation of non-histone ABCF1 may be involved in hepatocellular carcinoma (HCC) progression. In this study, we evaluated the prognostic value of ABCF1-K430la in HCC using immunohistochemical staining and performed amino acid point mutations, multi-omics crossover, and biochemical experiments to investigate its biological role and underlying mechanism. Additionally, we performed molecular docking on lactylation sites. ABCF1-K430la was highly expressed in HCC tissues and correlated with poor patient prognosis. Functionally, ABCF1-K430la promoted HCC growth and lung metastasis. Mechanistically, upon lactylation, E2 ubiquitin ligase activity of ABCF1 remained unaffected, and ABCF1 entered the nucleus, bound to the KDM3A promoter to upregulate its expression, and activated the KDM3A-H3K9me2-HIF1A axis, challenging the notion that ABCF1 functions exclusively in cytoplasmic protein translation. Notably, we discovered the existence of a lactate-ABCF1(430Kla)-HIF1A-lactate in HCC. A small-molecule drug screen targeting ABCF1-K430la revealed that tubuloside A inhibits ABCF1-K430la and suppresses HCC development. These findings demonstrate that elevated ABCF1-K430la expression promotes HCC development, suggesting it as a potential prognostic biomarker and therapeutic target for HCC.

{"title":"ABCF1-K430-Lactylation promotes HCC malignant progression via transcriptional activation of HIF1 signaling pathway","authors":"Han Hong, Hexu Han, Lei Wang, Wen Cao, Minjie Hu, Jindong Li, Jiawei Wang, Yijin Yang, XiaoYong Xu, Gaochao Li, Zixiang Zhang, Changhe Zhang, Minhui Xu, Honggang Wang, Qiang Wang, Yin Yuan","doi":"10.1038/s41418-024-01436-w","DOIUrl":"https://doi.org/10.1038/s41418-024-01436-w","url":null,"abstract":"<p>Lysine lactylation plays critical roles in various diseases, including cancer. Our previous study showed that lactylation of non-histone ABCF1 may be involved in hepatocellular carcinoma (HCC) progression. In this study, we evaluated the prognostic value of ABCF1-K430la in HCC using immunohistochemical staining and performed amino acid point mutations, multi-omics crossover, and biochemical experiments to investigate its biological role and underlying mechanism. Additionally, we performed molecular docking on lactylation sites. ABCF1-K430la was highly expressed in HCC tissues and correlated with poor patient prognosis. Functionally, ABCF1-K430la promoted HCC growth and lung metastasis. Mechanistically, upon lactylation, E2 ubiquitin ligase activity of ABCF1 remained unaffected, and ABCF1 entered the nucleus, bound to the KDM3A promoter to upregulate its expression, and activated the KDM3A-H3K9me2-HIF1A axis, challenging the notion that ABCF1 functions exclusively in cytoplasmic protein translation. Notably, we discovered the existence of a lactate-ABCF1(430Kla)-HIF1A-lactate in HCC. A small-molecule drug screen targeting ABCF1-K430la revealed that tubuloside A inhibits ABCF1-K430la and suppresses HCC development. These findings demonstrate that elevated ABCF1-K430la expression promotes HCC development, suggesting it as a potential prognostic biomarker and therapeutic target for HCC.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"1 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142917294","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inactivation of the SLC25A1 gene during embryogenesis induces a unique senescence program controlled by p53
IF 12.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-29 DOI: 10.1038/s41418-024-01428-w
Anna Kasprzyk-Pawelec, Mingjun Tan, Raneen Rahhal, Alec McIntosh, Harvey R. Fernandez, Rami M. Mosaoa, Lei Jiang, Gray W. Pearson, Eric Glasgow, Jerry Vockley, Christopher Albanese, Maria Laura Avantaggiati

Germline inactivating mutations of the SLC25A1 gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which SLC25A1 loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of SLC25A1 deficiency that mimics human VCFS/DGS and D/L-2HGA. Surprisingly, inactivation of both Slc25a1 alleles results in alterations in the development of multiple organs, and in a severe proliferation defect by activating two senescence programs, oncogene-induced senescence (OIS) and mitochondrial dysfunction-induced senescence (MiDAS), which converge upon the induction of the p53 tumor suppressor. Mechanistically, cells and tissues with dysfunctional SLC25A1 protein undergo metabolic and transcriptional rewiring leading to the accumulation of 2HG via a non-canonical pathway and to the depletion of nicotinamide adenine dinucleotide, NAD+, which trigger senescence. Replenishing the pool of NAD+ or promoting the clearance of 2HG rescues the proliferation defect of cells with dysfunctional SLC25A1 in a cooperative fashion. Further, removal of p53 activity via RNA interference restores proliferation, indicating that p53 acts as a critical barrier to the expansion of cells lacking functional SLC25A1. These findings reveal unexpected pathogenic roles of senescence and of p53 in D/L-2HGA and identify potential therapeutic strategies to correct salient molecular alterations driving this disease.

{"title":"Inactivation of the SLC25A1 gene during embryogenesis induces a unique senescence program controlled by p53","authors":"Anna Kasprzyk-Pawelec, Mingjun Tan, Raneen Rahhal, Alec McIntosh, Harvey R. Fernandez, Rami M. Mosaoa, Lei Jiang, Gray W. Pearson, Eric Glasgow, Jerry Vockley, Christopher Albanese, Maria Laura Avantaggiati","doi":"10.1038/s41418-024-01428-w","DOIUrl":"https://doi.org/10.1038/s41418-024-01428-w","url":null,"abstract":"<p>Germline inactivating mutations of the <i>SLC25A1</i> gene contribute to various human disorders, including Velocardiofacial (VCFS), DiGeorge (DGS) syndromes and combined D/L-2-hydroxyglutaric aciduria (D/L-2HGA), a severe systemic disease characterized by the accumulation of 2-hydroxyglutaric acid (2HG). The mechanisms by which <i>SLC25A1</i> loss leads to these syndromes remain largely unclear. Here, we describe a mouse model of <i>SLC25A1</i> deficiency that mimics human VCFS/DGS and D/L-2HGA. Surprisingly, inactivation of both <i>Slc25a1</i> alleles results in alterations in the development of multiple organs, and in a severe proliferation defect by activating two senescence programs, oncogene-induced senescence (OIS) and mitochondrial dysfunction-induced senescence (MiDAS), which converge upon the induction of the p53 tumor suppressor. Mechanistically, cells and tissues with dysfunctional SLC25A1 protein undergo metabolic and transcriptional rewiring leading to the accumulation of 2HG <i>via</i> a non-canonical pathway and to the depletion of nicotinamide adenine dinucleotide, NAD<sup>+</sup>, which trigger senescence. Replenishing the pool of NAD<sup>+</sup> or promoting the clearance of 2HG rescues the proliferation defect of cells with dysfunctional SLC25A1 in a cooperative fashion. Further, removal of p53 activity <i>via</i> RNA interference restores proliferation, indicating that p53 acts as a critical barrier to the expansion of cells lacking functional SLC25A1. These findings reveal unexpected pathogenic roles of senescence and of p53 in D/L-2HGA and identify potential therapeutic strategies to correct salient molecular alterations driving this disease.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"27 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142887877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Temporal dissection of the roles of Atg4 and ESCRT in autophagosome formation in yeast
IF 12.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-23 DOI: 10.1038/s41418-024-01438-8
Hui Li, Jing-Zhen Song, Cheng-Wen He, Meng-Xi Xie, Zheng-Tan Zhang, You Zhou, Xin-Jing Li, Li Cui, Jing Zhu, Qingqiu Gong, Zhiping Xie

Autophagosomes are formed by the enlargement and sealing of phagophores. This is accompanied by the recruitment and release of autophagy-related (Atg) proteins that function therein. Presently, the relationship among factors that act after the initial emergence of the phagophore is unclear. The endosomal sorting complexes required for transport (ESCRT) machinery and Atg4 are known to function in phagophore sealing and Atg8 release, respectively. Here we show that biochemically, both Atg4 and ESCRT promoted phagophore sealing. Intriguingly, Atg4-mediated release of Atg8 from the phagophore promoted phagophore sealing even in the absence of ESCRT. This sealing activity could be reconstituted in vitro using cell lysate and purified Atg4. To elucidate the temporal relationship between Atg4 and ESCRT, we charted a timeline of the autophagosome formation cycle based on the trafficking of Atg proteins and mapped the actions of Atg4 and ESCRT to specific stages. The temporal impact of Atg4-mediated release of Atg8 from phagophore was mapped to the stage after the assembly of phagophore assembly site (PAS) scaffold and phosphatidylinositol-3-kinase (PtdIns-3-K) complex; its retardation only extended the duration of Atg8 release stage, leading to delayed phagophore sealing and accumulation of multiple phagophores. The impacts of ESCRT were mapped to two stages. In addition to promoting phagophore sealing, it also dictates whether PtdIns-3-K recruitment can occur by controlling Atg9 trafficking, thereby determining the incidence of autophagosome formation. Accordingly, ESCRT deficiency led to a combination of reduced autophagosome frequency and extended autophagosome formation duration, manifesting as reduced autophagic flux but normal apparent Atg8 puncta number. Our study thus identifies Atg4-mediated Atg8 shedding as a novel membrane scission mechanism and reveals a new early-stage role for ESCRT in autophagy.

{"title":"Temporal dissection of the roles of Atg4 and ESCRT in autophagosome formation in yeast","authors":"Hui Li, Jing-Zhen Song, Cheng-Wen He, Meng-Xi Xie, Zheng-Tan Zhang, You Zhou, Xin-Jing Li, Li Cui, Jing Zhu, Qingqiu Gong, Zhiping Xie","doi":"10.1038/s41418-024-01438-8","DOIUrl":"https://doi.org/10.1038/s41418-024-01438-8","url":null,"abstract":"<p>Autophagosomes are formed by the enlargement and sealing of phagophores. This is accompanied by the recruitment and release of autophagy-related (Atg) proteins that function therein. Presently, the relationship among factors that act after the initial emergence of the phagophore is unclear. The endosomal sorting complexes required for transport (ESCRT) machinery and Atg4 are known to function in phagophore sealing and Atg8 release, respectively. Here we show that biochemically, both Atg4 and ESCRT promoted phagophore sealing. Intriguingly, Atg4-mediated release of Atg8 from the phagophore promoted phagophore sealing even in the absence of ESCRT. This sealing activity could be reconstituted in vitro using cell lysate and purified Atg4. To elucidate the temporal relationship between Atg4 and ESCRT, we charted a timeline of the autophagosome formation cycle based on the trafficking of Atg proteins and mapped the actions of Atg4 and ESCRT to specific stages. The temporal impact of Atg4-mediated release of Atg8 from phagophore was mapped to the stage after the assembly of phagophore assembly site (PAS) scaffold and phosphatidylinositol-3-kinase (PtdIns-3-K) complex; its retardation only extended the duration of Atg8 release stage, leading to delayed phagophore sealing and accumulation of multiple phagophores. The impacts of ESCRT were mapped to two stages. In addition to promoting phagophore sealing, it also dictates whether PtdIns-3-K recruitment can occur by controlling Atg9 trafficking, thereby determining the incidence of autophagosome formation. Accordingly, ESCRT deficiency led to a combination of reduced autophagosome frequency and extended autophagosome formation duration, manifesting as reduced autophagic flux but normal apparent Atg8 puncta number. Our study thus identifies Atg4-mediated Atg8 shedding as a novel membrane scission mechanism and reveals a new early-stage role for ESCRT in autophagy.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"281 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142874551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of thioredoxin reductase 1 sensitizes glucose-starved glioblastoma cells to disulfidptosis
IF 12.4 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-12-23 DOI: 10.1038/s41418-024-01440-0
Miaolu Tang, Kaitlyn Dirks, Soo Yeon Kim, Zhiqiang Qiu, Yan Gao, Dongxiao Sun, Gabrielle Peruggia, Jessica Sallavanti, Wei Li

Disulfidptosis is a recently identified form of cell death characterized by the aberrant accumulation of cellular disulfides. This process primarily occurs in glucose-starved cells expressing higher levels of SLC7A11 and has been proposed as a therapeutic strategy for cancers with hyperactive SCL7A11. However, the potential for inducing disulfidptosis through other mechanisms in cancers remains unclear. Here, we found that inhibiting thioredoxin reductase 1 (TrxR1), a key enzyme in the thioredoxin system, induces disulfidptosis in glioblastoma (GBM) cells. TrxR1 expression is elevated in GBM with activated transcriptional coactivator with PDZ-binding motif (TAZ) and correlates with poor prognosis. TrxR1 inhibitors induced GBM cell death that can be rescued by disulfide reducers but not by ROS scavengers or inhibitors of apoptosis, ferroptosis, or necroptosis. Glucose-starved cells, but not those deprived of oxygen or glutamine, increased TrxR1 expression in an NRF2-dependent manner and were more sensitive to TrxR1 inhibition-induced cell death. The dying cells initially exhibited highly dynamic lamellipodia, followed by actin cytoskeleton collapse. This process involved the accumulation of cytosolic peroxisomes and micropinocytic caveolae, as well as small gaps in the plasma membrane. Depletion of the WAVE complex component NCKAP1 partially rescued the cells, whereas Rac inhibition enhanced cell death. In an orthotopic xenograft GBM mouse model, TrxR1 depletion inhibited tumor growth and improved survival. Furthermore, cells undergoing TrxR1 inhibition exhibited features of immunogenic cell death. Therefore, this study suggests the potential of targeting TrxR1 as a therapeutic strategy in GBM.

{"title":"Inhibition of thioredoxin reductase 1 sensitizes glucose-starved glioblastoma cells to disulfidptosis","authors":"Miaolu Tang, Kaitlyn Dirks, Soo Yeon Kim, Zhiqiang Qiu, Yan Gao, Dongxiao Sun, Gabrielle Peruggia, Jessica Sallavanti, Wei Li","doi":"10.1038/s41418-024-01440-0","DOIUrl":"https://doi.org/10.1038/s41418-024-01440-0","url":null,"abstract":"<p>Disulfidptosis is a recently identified form of cell death characterized by the aberrant accumulation of cellular disulfides. This process primarily occurs in glucose-starved cells expressing higher levels of SLC7A11 and has been proposed as a therapeutic strategy for cancers with hyperactive SCL7A11. However, the potential for inducing disulfidptosis through other mechanisms in cancers remains unclear. Here, we found that inhibiting thioredoxin reductase 1 (TrxR1), a key enzyme in the thioredoxin system, induces disulfidptosis in glioblastoma (GBM) cells. TrxR1 expression is elevated in GBM with activated transcriptional coactivator with PDZ-binding motif (TAZ) and correlates with poor prognosis. TrxR1 inhibitors induced GBM cell death that can be rescued by disulfide reducers but not by ROS scavengers or inhibitors of apoptosis, ferroptosis, or necroptosis. Glucose-starved cells, but not those deprived of oxygen or glutamine, increased TrxR1 expression in an NRF2-dependent manner and were more sensitive to TrxR1 inhibition-induced cell death. The dying cells initially exhibited highly dynamic lamellipodia, followed by actin cytoskeleton collapse. This process involved the accumulation of cytosolic peroxisomes and micropinocytic caveolae, as well as small gaps in the plasma membrane. Depletion of the WAVE complex component NCKAP1 partially rescued the cells, whereas Rac inhibition enhanced cell death. In an orthotopic xenograft GBM mouse model, TrxR1 depletion inhibited tumor growth and improved survival. Furthermore, cells undergoing TrxR1 inhibition exhibited features of immunogenic cell death. Therefore, this study suggests the potential of targeting TrxR1 as a therapeutic strategy in GBM.</p>","PeriodicalId":9731,"journal":{"name":"Cell Death and Differentiation","volume":"26 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142879928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cell Death and Differentiation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1