Molecular mechanism and application of emerging technologies in study of bacterial persisters.

IF 4 2区 生物学 Q2 MICROBIOLOGY BMC Microbiology Pub Date : 2024-11-16 DOI:10.1186/s12866-024-03628-3
Shuo Yuan, Yamin Shen, Yingying Quan, Shuji Gao, Jing Zuo, Wenjie Jin, Rishun Li, Li Yi, Yuxin Wang, Yang Wang
{"title":"Molecular mechanism and application of emerging technologies in study of bacterial persisters.","authors":"Shuo Yuan, Yamin Shen, Yingying Quan, Shuji Gao, Jing Zuo, Wenjie Jin, Rishun Li, Li Yi, Yuxin Wang, Yang Wang","doi":"10.1186/s12866-024-03628-3","DOIUrl":null,"url":null,"abstract":"<p><p>Since the discovery of antibiotics, they have served as a potent weapon against bacterial infections; however, natural evolution has allowed bacteria to adapt and develop coping mechanisms, ultimately leading to the concerning escalation of multidrug resistance. Bacterial persisters are a subpopulation that can survive briefly under high concentrations of antibiotic treatment and resume growth after lethal stress. Importantly, bacterial persisters are thought to be a significant cause of ineffective antibiotic therapy and recurrent infections in clinical practice and are thought to contribute to the development of antibiotic resistance. Therefore, it is essential to elucidate the molecular mechanisms of persister formation and to develop precise medical strategies to combat persistent infections. However, there are many difficulties in studying persisters due to their small proportion in the microbiota and their non-heritable nature. In this review, we discuss the similarities and differences of antibiotic resistance, tolerance, persistence, and viable but non-culturable cells, summarize the molecular mechanisms that affect the formation of persisters, and outline the emerging technologies in the study of persisters.</p>","PeriodicalId":9233,"journal":{"name":"BMC Microbiology","volume":"24 1","pages":"480"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568608/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12866-024-03628-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Since the discovery of antibiotics, they have served as a potent weapon against bacterial infections; however, natural evolution has allowed bacteria to adapt and develop coping mechanisms, ultimately leading to the concerning escalation of multidrug resistance. Bacterial persisters are a subpopulation that can survive briefly under high concentrations of antibiotic treatment and resume growth after lethal stress. Importantly, bacterial persisters are thought to be a significant cause of ineffective antibiotic therapy and recurrent infections in clinical practice and are thought to contribute to the development of antibiotic resistance. Therefore, it is essential to elucidate the molecular mechanisms of persister formation and to develop precise medical strategies to combat persistent infections. However, there are many difficulties in studying persisters due to their small proportion in the microbiota and their non-heritable nature. In this review, we discuss the similarities and differences of antibiotic resistance, tolerance, persistence, and viable but non-culturable cells, summarize the molecular mechanisms that affect the formation of persisters, and outline the emerging technologies in the study of persisters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究细菌宿主的分子机制和新兴技术的应用。
自从抗生素被发现以来,它们就一直是对抗细菌感染的有力武器;然而,自然进化使细菌得以适应并发展出应对机制,最终导致多重耐药性的升级。细菌持久体是一个亚群,它们能在高浓度抗生素治疗下短暂存活,并在致命压力后恢复生长。重要的是,在临床实践中,细菌持久体被认为是导致抗生素治疗无效和反复感染的一个重要原因,并被认为有助于抗生素耐药性的产生。因此,必须阐明顽固菌形成的分子机制,并制定精确的医疗策略来对抗顽固感染。然而,由于顽固菌在微生物群中所占比例较小,且具有不可遗传性,因此在研究顽固菌方面存在许多困难。在这篇综述中,我们将讨论抗生素耐药性、耐受性、持久性和可存活但不可培养细胞的异同,总结影响持久性细胞形成的分子机制,并概述研究持久性细胞的新兴技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Microbiology
BMC Microbiology 生物-微生物学
CiteScore
7.20
自引率
0.00%
发文量
280
审稿时长
3 months
期刊介绍: BMC Microbiology is an open access, peer-reviewed journal that considers articles on analytical and functional studies of prokaryotic and eukaryotic microorganisms, viruses and small parasites, as well as host and therapeutic responses to them and their interaction with the environment.
期刊最新文献
Effects of Saccharomyces boulardii on microbiota composition and metabolite levels in the small intestine of constipated mice. Interpretation of bacterial composition patterns and community assembly processes in the rhizosphere soil of tea trees in karst areas. The effect of flue-curing and redrying on the diversity of fungal communities in tobacco leaves. Complete genome sequencing of Enterobacter ludwigii strain T977 revealed its great ability for starch degradation of Nicotiana tabacum L. Yunyan 97. Characterization of non-O157 enterohemorrhagic Escherichia coli isolated from different sources in Egypt.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1