{"title":"PRDM16 suppresses ferroptosis to protect against sepsis-associated acute kidney injury by targeting the NRF2/GPX4 axis","authors":"Qiang Zheng , Jihong Xing , Xiaozhou Li , Xianming Tang , Dongshan Zhang","doi":"10.1016/j.redox.2024.103417","DOIUrl":null,"url":null,"abstract":"<div><div>Acute kidney injury (AKI) constitutes a significant public health issue. Sepsis accounts for over 50 % of AKI cases in the ICU. Recent findings from our research indicated that the PRD1-BF1-RIZ1 homeodomain protein 16 (PRDM16) inhibited the progression of diabetic kidney disease (DKD). However, its precise role and regulatory mechanism in sepsis-induced AKI remain obscure. This study reveals that lipopolysaccharide (LPS) and cecum ligation and puncture (CLP) instigated PRDM16 expression in Boston University mouse proximal tubule (BUMPT) cells and mouse kidneys, respectively. Functionally, PRDM16 curtailed LPS-induced ferroptosis. Mechanistically, PRDM16 associates with the promoter regions of nuclear factor-erythroid 2-related factor-2 (NRF2) and augments its expression, subsequently enhancing glutathione peroxidase 4 (GPX4) expression. Additionally, PRDM16 directly engages with the promoter regions of GPX4, stimulating its expression. Notably, these observations were corroborated in human renal tubular epithelial (HK-2) cells. Furthermore, the ablation of PRDM16 from kidney proximal tubules in mice inhibited NRF2 and GPX4 expression, leading to decreased glutathione (GSH)/oxidized glutathione (GSSG) ratio, increased Fe<sup>2+</sup> and reactive oxygen species (ROS) production, exacerbated ferroptosis, and AKI progression. Conversely, PRDM16 knock-in exhibited the opposite effects. Ultimately, adenovirus (ADV)-PRDM16 plasmid or poly (lactide-glycolide acid) (PLGA)-encapsulated formononetin not only mitigated sepsis-induced AKI but also alleviated liver, cardiac, and lung injury. In summary, PRDM16 inhibits ferroptosis via the NRF2/GPX4 axis or GPX4 to prevent sepsis-induced multi-organ injury, including AKI. PLGA-encapsulated formononetin presents a promising therapeutic approach.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"78 ","pages":"Article 103417"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231724003951","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute kidney injury (AKI) constitutes a significant public health issue. Sepsis accounts for over 50 % of AKI cases in the ICU. Recent findings from our research indicated that the PRD1-BF1-RIZ1 homeodomain protein 16 (PRDM16) inhibited the progression of diabetic kidney disease (DKD). However, its precise role and regulatory mechanism in sepsis-induced AKI remain obscure. This study reveals that lipopolysaccharide (LPS) and cecum ligation and puncture (CLP) instigated PRDM16 expression in Boston University mouse proximal tubule (BUMPT) cells and mouse kidneys, respectively. Functionally, PRDM16 curtailed LPS-induced ferroptosis. Mechanistically, PRDM16 associates with the promoter regions of nuclear factor-erythroid 2-related factor-2 (NRF2) and augments its expression, subsequently enhancing glutathione peroxidase 4 (GPX4) expression. Additionally, PRDM16 directly engages with the promoter regions of GPX4, stimulating its expression. Notably, these observations were corroborated in human renal tubular epithelial (HK-2) cells. Furthermore, the ablation of PRDM16 from kidney proximal tubules in mice inhibited NRF2 and GPX4 expression, leading to decreased glutathione (GSH)/oxidized glutathione (GSSG) ratio, increased Fe2+ and reactive oxygen species (ROS) production, exacerbated ferroptosis, and AKI progression. Conversely, PRDM16 knock-in exhibited the opposite effects. Ultimately, adenovirus (ADV)-PRDM16 plasmid or poly (lactide-glycolide acid) (PLGA)-encapsulated formononetin not only mitigated sepsis-induced AKI but also alleviated liver, cardiac, and lung injury. In summary, PRDM16 inhibits ferroptosis via the NRF2/GPX4 axis or GPX4 to prevent sepsis-induced multi-organ injury, including AKI. PLGA-encapsulated formononetin presents a promising therapeutic approach.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.