Cheng Huang , Shuang Ji , Tianyi Sun, Zhenlei Chen, Qing Guo, Yao Yan
{"title":"Identification of muscle-activation-dependent human-exoskeleton coupling parameters","authors":"Cheng Huang , Shuang Ji , Tianyi Sun, Zhenlei Chen, Qing Guo, Yao Yan","doi":"10.1016/j.jelekin.2024.102946","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposed a muscle-activation-dependent human-exoskeleton model for predicting human-exoskeleton coupling parameters to improve the studies of coupling dynamics. With a newly designed platform and the help of 20 volunteers (10 males and 10 females, age: 24.45 ± 2.31 years old, height: 167.70 ± 8.35 cm, weight: 66.50 ± 18.74 kg), coupling parameters were identified with surface electromyographic (EMG) signals monitored to represent muscle activation. Then convolutional neural network (CNN) was used to predict coupling parameters with six EMG features as inputs:mean absolute value (MAV), mean absolute value slope (MAVSLP), waveform length (WL), Willison Amplitude (WAMP), variance (VAR), and auto regressive (AR) coefficients. Finally, sensitivity analysis of the CNN’s performance identified AR, MAV, and VAR as the key determinants of the coupling parameters. Further analysis unveiled strong correlation between coupling stiffness and both MAV and VAR. The novelty and contribution are the design of coupling experimental platform and the establishment of muscle-activation-dependent human-exoskeleton coupling model which provides a possibility to obtain coupling parameter identification form complex human-exoskeleton interaction scenarios.</div></div>","PeriodicalId":56123,"journal":{"name":"Journal of Electromyography and Kinesiology","volume":"80 ","pages":"Article 102946"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromyography and Kinesiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050641124000907","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposed a muscle-activation-dependent human-exoskeleton model for predicting human-exoskeleton coupling parameters to improve the studies of coupling dynamics. With a newly designed platform and the help of 20 volunteers (10 males and 10 females, age: 24.45 ± 2.31 years old, height: 167.70 ± 8.35 cm, weight: 66.50 ± 18.74 kg), coupling parameters were identified with surface electromyographic (EMG) signals monitored to represent muscle activation. Then convolutional neural network (CNN) was used to predict coupling parameters with six EMG features as inputs:mean absolute value (MAV), mean absolute value slope (MAVSLP), waveform length (WL), Willison Amplitude (WAMP), variance (VAR), and auto regressive (AR) coefficients. Finally, sensitivity analysis of the CNN’s performance identified AR, MAV, and VAR as the key determinants of the coupling parameters. Further analysis unveiled strong correlation between coupling stiffness and both MAV and VAR. The novelty and contribution are the design of coupling experimental platform and the establishment of muscle-activation-dependent human-exoskeleton coupling model which provides a possibility to obtain coupling parameter identification form complex human-exoskeleton interaction scenarios.
期刊介绍:
Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of human movement from muscle contraction via its motor units and sensory system to integrated motion through mechanical and electrical detection techniques.
As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics and electrical stimulation. Applications in rehabilitation, sports & exercise, motion analysis, ergonomics, alternative & complimentary medicine, measures of human performance and technical articles on electromyographic signal processing are welcome.