A Machine Vision-Based Fiber Profile Image Recognition Method for Alignment of FBG Inscribing

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Journal Pub Date : 2024-10-09 DOI:10.1109/JSEN.2024.3471868
Yasheng Chang;Sitong Yan;Jianwei Zhang;Wei Liu;Shize Yao
{"title":"A Machine Vision-Based Fiber Profile Image Recognition Method for Alignment of FBG Inscribing","authors":"Yasheng Chang;Sitong Yan;Jianwei Zhang;Wei Liu;Shize Yao","doi":"10.1109/JSEN.2024.3471868","DOIUrl":null,"url":null,"abstract":"The axial alignment of fiber core before fiber Bragg grating (FBG) inscription is time-consuming and laborious with naked eye, which requires autonomous alignment technology urgently. The image recognition and correction of optical fiber profiles are the primary breakthrough point and has been elevated to a more important position. This article employed a coaxial imaging device configured with an FBG inscribing system to obtain optical fiber images and proposed image recognition for alignment of FBG inscribing based on machine vision. First, a global image tilt detection algorithm based on improved Radon algorithm was proposed to detect horizontal tilt angle of fiber, and then, adaptive moment estimation (ADAM)-optimized U-Net was proposed to accurately segment the fiber core, achieving pixel accuracy of 98.82%. Finally, the coordinates of the midpoint of the fiber core were provided. Through this research, the strong technical support will be provided for the high flexibility, stability, and efficiency of FBG inscription, paving the road for the research of FBG automated inscription, and further serving the application of fiber optic sensing in a wider range of scenarios.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"37557-37565"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10713071/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The axial alignment of fiber core before fiber Bragg grating (FBG) inscription is time-consuming and laborious with naked eye, which requires autonomous alignment technology urgently. The image recognition and correction of optical fiber profiles are the primary breakthrough point and has been elevated to a more important position. This article employed a coaxial imaging device configured with an FBG inscribing system to obtain optical fiber images and proposed image recognition for alignment of FBG inscribing based on machine vision. First, a global image tilt detection algorithm based on improved Radon algorithm was proposed to detect horizontal tilt angle of fiber, and then, adaptive moment estimation (ADAM)-optimized U-Net was proposed to accurately segment the fiber core, achieving pixel accuracy of 98.82%. Finally, the coordinates of the midpoint of the fiber core were provided. Through this research, the strong technical support will be provided for the high flexibility, stability, and efficiency of FBG inscription, paving the road for the research of FBG automated inscription, and further serving the application of fiber optic sensing in a wider range of scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器视觉的光纤轮廓图像识别方法,用于 FBG 刻线对准
光纤布拉格光栅(FBG)刻蚀前的纤芯轴向对准工作,肉眼观察费时费力,迫切需要自主对准技术。光纤轮廓的图像识别和校正是首要突破点,已被提升到更重要的位置。本文利用配置有 FBG 刻划系统的同轴成像设备获取光纤图像,并提出了基于机器视觉的 FBG 刻划对准图像识别技术。首先,提出了基于改进 Radon 算法的全局图像倾斜检测算法来检测光纤的水平倾斜角度,然后提出了自适应矩估计(ADAM)优化的 U-Net 来精确分割光纤纤芯,像素精度达到 98.82%。最后,还提供了纤芯中点的坐标。通过这项研究,将为光纤光栅刻划的高灵活性、稳定性和高效性提供强有力的技术支持,为光纤光栅自动化刻划的研究铺平道路,进一步服务于光纤传感在更广泛场景中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
期刊最新文献
IEEE Sensors Journal Publication Information Table of Contents Front Cover IEEE Sensors Council A Clustered Routing Algorithm Based on Forwarding Mechanism Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1