{"title":"Dimensionality Reduction Through Multiple Convolutional Channels for RSS-Based Indoor Localization","authors":"Ayan Kumar Panja;Snehan Biswas;Sarmistha Neogy;Chandreyee Chowdhury","doi":"10.1109/JSEN.2024.3470549","DOIUrl":null,"url":null,"abstract":"Dimensionality reduction is an important task for Wi-Fi-based indoor localization (IL). Most such techniques do not take into account realistic data collection issues such as the presence of outliers or inconsistent fingerprint instances. These fingerprints either represent a class boundary or an outlier. Instance hardness is a measure that better characterizes such instances. Accordingly, in this work, our contribution is to propose a convolutional autoencoder-based dimensionality reduction approach that works on the basis of feature transformation and instance hardness. The encoding process of the data input involves a two-channel representation of a fingerprint dataset that holds the normalized RSS and an instance hardness measure, that is, a k-disagreeing score. The inclusion of the k-disagreeing score into the training pipeline is made with the objective of injecting instance importance for training using 1-D CNN architectures for classification. The experimentations were performed on three benchmark datasets and a collected dataset. The proposed pipeline is found to yield an accuracy of more than 97% with error deviation ranging from 2.2–\n<inline-formula> <tex-math>$2.37{m}$ </tex-math></inline-formula>\n which is quite acceptable for any localization system.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"24 22","pages":"37482-37491"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/10705937/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Dimensionality reduction is an important task for Wi-Fi-based indoor localization (IL). Most such techniques do not take into account realistic data collection issues such as the presence of outliers or inconsistent fingerprint instances. These fingerprints either represent a class boundary or an outlier. Instance hardness is a measure that better characterizes such instances. Accordingly, in this work, our contribution is to propose a convolutional autoencoder-based dimensionality reduction approach that works on the basis of feature transformation and instance hardness. The encoding process of the data input involves a two-channel representation of a fingerprint dataset that holds the normalized RSS and an instance hardness measure, that is, a k-disagreeing score. The inclusion of the k-disagreeing score into the training pipeline is made with the objective of injecting instance importance for training using 1-D CNN architectures for classification. The experimentations were performed on three benchmark datasets and a collected dataset. The proposed pipeline is found to yield an accuracy of more than 97% with error deviation ranging from 2.2–
$2.37{m}$
which is quite acceptable for any localization system.
期刊介绍:
The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following:
-Sensor Phenomenology, Modelling, and Evaluation
-Sensor Materials, Processing, and Fabrication
-Chemical and Gas Sensors
-Microfluidics and Biosensors
-Optical Sensors
-Physical Sensors: Temperature, Mechanical, Magnetic, and others
-Acoustic and Ultrasonic Sensors
-Sensor Packaging
-Sensor Networks
-Sensor Applications
-Sensor Systems: Signals, Processing, and Interfaces
-Actuators and Sensor Power Systems
-Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting
-Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data)
-Sensors in Industrial Practice