{"title":"Accurate and Scalable Graph Convolutional Networks for Recommendation Based on Subgraph Propagation","authors":"Xueqi Li;Guoqing Xiao;Yuedan Chen;Kenli Li;Gao Cong","doi":"10.1109/TKDE.2024.3467333","DOIUrl":null,"url":null,"abstract":"In recommendation systems, Graph Convolutional Networks (GCNs) often suffer from significant computational and memory cost when propagating features across the entire user-item graph. While various sampling strategies have been introduced to reduce the cost, the challenge of neighbor explosion persists, primarily due to the iterative nature of neighbor aggregation. This work focuses on exploring subgraph propagation for scalable recommendation by addressing two primary challenges: \n<italic>efficient and effective subgraph construction</i>\n and \n<italic>subgraph sparsity</i>\n. To address these challenges, we propose a novel \n<underline>GCN</u>\n model for recommendation based on \n<underline>Sub</u>\ngraph propagation, called SubGCN. One key component of SubGCN is BiPPR, a technique that fuses both source- and target-based Personalized PageRank (PPR) approximations, to overcome the challenge of \n<italic>efficient and effective subgraph construction</i>\n. Furthermore, we propose a source-target contrastive learning scheme to mitigate the impact of \n<italic>subgraph sparsity</i>\n for SubGCN. We conduct extensive experiments on two large and two medium-sized datasets to evaluate the scalability, efficiency, and effectiveness of SubGCN. On medium-sized datasets, compared to full-graph GCNs, SubGCN achieves competitive accuracy while using only 23.79% training time on Gowalla and 16.3% on Yelp2018. On large datasets, where full-graph GCNs ran out of the GPU memory, our proposed SubGCN outperforms widely used sampling strategies in terms of training efficiency and recommendation accuracy.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"7556-7568"},"PeriodicalIF":8.9000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10714406/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In recommendation systems, Graph Convolutional Networks (GCNs) often suffer from significant computational and memory cost when propagating features across the entire user-item graph. While various sampling strategies have been introduced to reduce the cost, the challenge of neighbor explosion persists, primarily due to the iterative nature of neighbor aggregation. This work focuses on exploring subgraph propagation for scalable recommendation by addressing two primary challenges:
efficient and effective subgraph construction
and
subgraph sparsity
. To address these challenges, we propose a novel
GCN
model for recommendation based on
Sub
graph propagation, called SubGCN. One key component of SubGCN is BiPPR, a technique that fuses both source- and target-based Personalized PageRank (PPR) approximations, to overcome the challenge of
efficient and effective subgraph construction
. Furthermore, we propose a source-target contrastive learning scheme to mitigate the impact of
subgraph sparsity
for SubGCN. We conduct extensive experiments on two large and two medium-sized datasets to evaluate the scalability, efficiency, and effectiveness of SubGCN. On medium-sized datasets, compared to full-graph GCNs, SubGCN achieves competitive accuracy while using only 23.79% training time on Gowalla and 16.3% on Yelp2018. On large datasets, where full-graph GCNs ran out of the GPU memory, our proposed SubGCN outperforms widely used sampling strategies in terms of training efficiency and recommendation accuracy.
期刊介绍:
The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.