{"title":"Design of Ultra-Strong As-Cast Titanium Alloy at 600 ℃ by Using Cluster Formula","authors":"Zhihao Zhu, Cenyang Wang, Tianyu Liu, Shuang Zhang, Chuang Dong","doi":"10.1007/s40195-024-01778-x","DOIUrl":null,"url":null,"abstract":"<div><p>A Ti–5.4Al–6.4Zr–6.2Sn–0.4Mo–1.6W–0.4Nb–3.2Ta–0.5Si alloy is designed following cluster formula approach that achieves a strength level of 1 GPa at 600 ℃ in the as-cast state, superior to any existing high-temperature Ti alloys. Its composition is formulated by 17 basic units, <i>α</i>-{[Al-Ti<sub>12</sub>](AlTi<sub>2</sub>)}<sub>12</sub> + <i>β</i>-{[Al-Ti<sub>12</sub>Zr<sub>2</sub>](Mo<sub>0.125</sub>Nb<sub>0.125</sub>Ta<sub>0.5</sub>W<sub>0.25</sub>Sn<sub>1.5</sub>Si<sub>0.5</sub>)}<sub>5</sub>, each unit covering a nearest-neighbor cluster plus a few next-neighbor glue atoms. This design is on the basis of the composition formula of Ti65 alloy, with an enhanced <i>β</i> stability via more Zr, Mo, Nb, Ta, W, Sn, and Si co-alloying. Upon copper-mold pour casting, this alloy shows a good microstructure stability. In tensile testing below at 650 ℃, its <i>α</i> plates thickness is nearly at the same level of 0.2 μm, which is much smaller than 0.7–0.8 μm of Ti65 at the same condition. The changes in volume fraction of <i>β</i> phase are increased by 86%, much less than by 105% in Ti65. Its room-temperature strength reaches the ultra-high-strength level, with an ultimate tensile strength of 1328 MPa and a yield strength of 1117 MPa, with a moderate elongation of 3.8%. At 600 ℃, its ultimate tensile strength of 1017 MPa and yield strength of 936 MPa are superior to those of any existing high-temperature Ti alloys, with an elongation of 7.2%. At 650 ℃, its ultimate tensile strength of 848 MPa still maintains a high level.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"37 12","pages":"2068 - 2082"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01778-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
A Ti–5.4Al–6.4Zr–6.2Sn–0.4Mo–1.6W–0.4Nb–3.2Ta–0.5Si alloy is designed following cluster formula approach that achieves a strength level of 1 GPa at 600 ℃ in the as-cast state, superior to any existing high-temperature Ti alloys. Its composition is formulated by 17 basic units, α-{[Al-Ti12](AlTi2)}12 + β-{[Al-Ti12Zr2](Mo0.125Nb0.125Ta0.5W0.25Sn1.5Si0.5)}5, each unit covering a nearest-neighbor cluster plus a few next-neighbor glue atoms. This design is on the basis of the composition formula of Ti65 alloy, with an enhanced β stability via more Zr, Mo, Nb, Ta, W, Sn, and Si co-alloying. Upon copper-mold pour casting, this alloy shows a good microstructure stability. In tensile testing below at 650 ℃, its α plates thickness is nearly at the same level of 0.2 μm, which is much smaller than 0.7–0.8 μm of Ti65 at the same condition. The changes in volume fraction of β phase are increased by 86%, much less than by 105% in Ti65. Its room-temperature strength reaches the ultra-high-strength level, with an ultimate tensile strength of 1328 MPa and a yield strength of 1117 MPa, with a moderate elongation of 3.8%. At 600 ℃, its ultimate tensile strength of 1017 MPa and yield strength of 936 MPa are superior to those of any existing high-temperature Ti alloys, with an elongation of 7.2%. At 650 ℃, its ultimate tensile strength of 848 MPa still maintains a high level.
期刊介绍:
This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.