Ideal spin-orbit-free Dirac semimetal and diverse topological transitions in Y8CoIn3 family

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-11-15 DOI:10.1038/s43246-024-00635-9
Manabu Sato, Juba Bouaziz, Shuntaro Sumita, Shingo Kobayashi, Ikuma Tateishi, Stefan Blügel, Akira Furusaki, Motoaki Hirayama
{"title":"Ideal spin-orbit-free Dirac semimetal and diverse topological transitions in Y8CoIn3 family","authors":"Manabu Sato, Juba Bouaziz, Shuntaro Sumita, Shingo Kobayashi, Ikuma Tateishi, Stefan Blügel, Akira Furusaki, Motoaki Hirayama","doi":"10.1038/s43246-024-00635-9","DOIUrl":null,"url":null,"abstract":"Topological semimetals, known for their intriguing properties arising from band degeneracies, have garnered significant attention. However, the discovery of a material realization and the detailed characterization of spinless Dirac semimetals have not yet been accomplished. Here, we propose from first-principles calculations that the RE8CoX3 group (RE = rare earth elements, X = Al, Ga, or In) contains ideal spinless Dirac semimetals whose Fermi surfaces are fourfold degenerate band-crossing points (without including spin degeneracy). Despite the lack of space inversion symmetry in these materials, Dirac points are formed on the rotation-symmetry axis due to accidental degeneracies of two bands corresponding to different 2-dimensional irreducible representations of the C6v group. We also investigate, through first-principles calculations and effective model analysis, various phase transitions caused by lattice distortion or elemental substitutions from the Dirac semimetal phase to distinct topological semimetallic phases such as nonmagnetic linked-nodal-line and Weyl semimetals (characterized by the second Stiefel–Whitney class) and ferromagnetic Weyl semimetals. Band degeneracies at the Fermi level in topological semimetals are sources of intriguing interference effects between electronic states around the degeneracy points. Here, the RE8CoX3 compounds, with RE = rare-earth and X = Al, Ga, or In, are proposed as realizations of ideal spinless Dirac semimetals hosting the fourfold degenerate band-crossing points without the spin degrees of freedom.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-10"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00635-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00635-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Topological semimetals, known for their intriguing properties arising from band degeneracies, have garnered significant attention. However, the discovery of a material realization and the detailed characterization of spinless Dirac semimetals have not yet been accomplished. Here, we propose from first-principles calculations that the RE8CoX3 group (RE = rare earth elements, X = Al, Ga, or In) contains ideal spinless Dirac semimetals whose Fermi surfaces are fourfold degenerate band-crossing points (without including spin degeneracy). Despite the lack of space inversion symmetry in these materials, Dirac points are formed on the rotation-symmetry axis due to accidental degeneracies of two bands corresponding to different 2-dimensional irreducible representations of the C6v group. We also investigate, through first-principles calculations and effective model analysis, various phase transitions caused by lattice distortion or elemental substitutions from the Dirac semimetal phase to distinct topological semimetallic phases such as nonmagnetic linked-nodal-line and Weyl semimetals (characterized by the second Stiefel–Whitney class) and ferromagnetic Weyl semimetals. Band degeneracies at the Fermi level in topological semimetals are sources of intriguing interference effects between electronic states around the degeneracy points. Here, the RE8CoX3 compounds, with RE = rare-earth and X = Al, Ga, or In, are proposed as realizations of ideal spinless Dirac semimetals hosting the fourfold degenerate band-crossing points without the spin degrees of freedom.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Y8CoIn3 族中的理想无自旋轨道狄拉克半金属和多种拓扑转变
拓扑半金属因其因带变性而产生的奇妙特性而闻名,并已引起了广泛关注。然而,无自旋狄拉克半金属材料的发现和详细表征尚未完成。在此,我们通过第一性原理计算提出 RE8CoX3 族(RE = 稀土元素,X = Al、Ga 或 In)包含理想的无自旋狄拉克半金属,其费米面是四倍退化带交叉点(不包括自旋退化)。尽管这些材料缺乏空间反转对称性,但由于与 C6v 群的不同 2 维不可还原表示相对应的两个带的意外退化,在旋转对称轴上形成了狄拉克点。我们还通过第一性原理计算和有效模型分析,研究了由晶格畸变或元素置换引起的从狄拉克半金属相到不同拓扑半金属相的各种相变,如非磁性链节线半金属和韦尔半金属(以第二斯蒂费尔-惠特尼类为特征)以及铁磁性韦尔半金属。拓扑半金属费米级的带退变性是退变点周围电子态之间有趣的干涉效应的来源。这里提出的 RE8CoX3 化合物(RE = 稀土,X = 铝、镓或铟)是理想的无自旋狄拉克半金属的现实化,其中包含没有自旋自由度的四重退变带交叉点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Ideal spin-orbit-free Dirac semimetal and diverse topological transitions in Y8CoIn3 family Design of highly responsive chemiresistor-based sensors by interfacing NiPc with graphene Rapid and precise large area mapping of rare-earth doping homogeneity in luminescent materials Machine vision system by optically tunable 2D magnetic junctions Unraveling the origin of conductivity change in Co-doped FeRh phase transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1