Efficient Simultaneous Second Harmonic Generation and Dispersive Wave Generation in Lithium Niobate Thin Film

IF 9.8 1区 物理与天体物理 Q1 OPTICS Laser & Photonics Reviews Pub Date : 2024-11-16 DOI:10.1002/lpor.202400335
Lingzhi Peng, Liqiang Liu, Xiaoni Li, Lihong Hong, Zhiyuan Li
{"title":"Efficient Simultaneous Second Harmonic Generation and Dispersive Wave Generation in Lithium Niobate Thin Film","authors":"Lingzhi Peng, Liqiang Liu, Xiaoni Li, Lihong Hong, Zhiyuan Li","doi":"10.1002/lpor.202400335","DOIUrl":null,"url":null,"abstract":"Lithium niobate thin film (LNTF) is a promising platform for ultra-low loss nonlinear integrated photonics. Here, the simultaneous generation of second harmonic wave (SHW) and dispersive wave (DW) are demonstrated in a single LNTF under the pump of a femtosecond pulse laser, with a conversion efficiency exceeding 25%. The second harmonic generation (SHG) uses the modal phase matching mechanism based on the second-order nonlinear effect, while the DW generation is based on the perturbations of soliton dynamics caused by self-phase modulation and higher-order dispersion. Notably, significant and symmetrical SHW and DW patterns are observed, which exhibit strong spatial dispersion properties. A comprehensive analysis of the phase-matching conditions are conducted for SHG and DW generation and provide a clear elucidation of the spectral properties of different regions of the emitted light patterns. Additionally, the evolution of the pump light in LNTF is thoroughly investigated, and the solutions of the generalized Schrödinger equation are in good agreement with these experimental results. This work sheds new light on the rich physics of nonlinear optical interactions on LNTF, and by utilizing the synergistic effect of second-order and third-order nonlinear effects, this study anticipates achieving efficient and high energy on-chip broadband frequency conversion and supercontinuum generation across octaves.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"76 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202400335","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium niobate thin film (LNTF) is a promising platform for ultra-low loss nonlinear integrated photonics. Here, the simultaneous generation of second harmonic wave (SHW) and dispersive wave (DW) are demonstrated in a single LNTF under the pump of a femtosecond pulse laser, with a conversion efficiency exceeding 25%. The second harmonic generation (SHG) uses the modal phase matching mechanism based on the second-order nonlinear effect, while the DW generation is based on the perturbations of soliton dynamics caused by self-phase modulation and higher-order dispersion. Notably, significant and symmetrical SHW and DW patterns are observed, which exhibit strong spatial dispersion properties. A comprehensive analysis of the phase-matching conditions are conducted for SHG and DW generation and provide a clear elucidation of the spectral properties of different regions of the emitted light patterns. Additionally, the evolution of the pump light in LNTF is thoroughly investigated, and the solutions of the generalized Schrödinger equation are in good agreement with these experimental results. This work sheds new light on the rich physics of nonlinear optical interactions on LNTF, and by utilizing the synergistic effect of second-order and third-order nonlinear effects, this study anticipates achieving efficient and high energy on-chip broadband frequency conversion and supercontinuum generation across octaves.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铌酸锂薄膜中同时产生二次谐波和色散波的效率
铌酸锂薄膜(LNTF)是一种前景广阔的超低损耗非线性集成光子学平台。在这里,我们展示了在飞秒脉冲激光的泵浦作用下,在单个铌酸锂薄膜中同时产生二次谐波(SHW)和色散波(DW),转换效率超过 25%。二次谐波(SHG)的产生利用了基于二阶非线性效应的模态相位匹配机制,而色散波(DW)的产生则基于自相位调制和高阶色散引起的孤子动力学扰动。值得注意的是,我们观察到了明显对称的 SHW 和 DW 图案,它们表现出很强的空间色散特性。对产生 SHG 和 DW 的相位匹配条件进行了全面分析,清楚地阐明了发射光图案不同区域的光谱特性。此外,还深入研究了 LNTF 中泵浦光的演变,广义薛定谔方程的解与这些实验结果非常吻合。通过利用二阶和三阶非线性效应的协同效应,这项研究有望实现高效、高能的片上宽带频率转换和跨八度的超连续发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
期刊最新文献
Thin-Film-Lithium-Niobate Photonic Chip for Ultra-Wideband and High-Precision Microwave Frequency Measurement A Space-Time Knife-Edge in Epsilon-Near-Zero Films for Ultrafast Pulse Characterization Switchable Narrowband Diffuse Thermal Emission With an In3SbTe2‐Based Planar Structure Reconfiguration of Quantum Photonic Integrated Circuits Using Auxiliary Fields Ultrahigh-Power Germanium Photodetector Enabling Amplifier-Free Wireless Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1