{"title":"Dark Current Suppression in Two-dimensional Histamine Lead Iodine Perovskite Single Crystal for X-ray Detection and Imaging","authors":"Jun'an Lai, Sijun Cao, Shiji Zhou, Peng He, Kang An, Peng Feng, Daofu Wu, Yongqiang Zhou, Mengyue Wu, Qiang Huang, Xiaosheng Tang","doi":"10.1002/lpor.202401365","DOIUrl":null,"url":null,"abstract":"Lead halide perovskites have emerged as attractive X-ray detector materials, owing to properties such as strong X-ray stopping power, excellent carrier transport, and high sensitivity. Additionally, they can be easily prepared by using solution-based synthesis approaches. However, traditional 3D (three-dimensional) perovskites X-ray detectors have shown limited application due to high dark currents generated under bias voltage as a result of strong ion migration. In this work, an X-ray detector with a vertical structure device is demonstrated using 2D (two-dimensional) histamine lead halide perovskite single crystal HAPbI<sub>4</sub> (HPI, HA = histamine). Due to the dielectric screening effect of diamine and the vertical structure of the HPI device, the fabricated detector shows a sensitivity of 7737 µC Gy<sub>air</sub><sup>−1</sup> cm<sup>−2</sup> under a bias voltage of 30 V. Furthermore, the detector shows a sensitivity of 293 µC Gy<sub>air</sub><sup>−1</sup> cm<sup>−2</sup> and detection limit of 51.38 nGy<sub>air</sub> s<sup>−1</sup> without bias voltage, wherein the dark current is almost completely suppressed. All of these properties indicate the X-ray detection device is a promising candidate for next-generation optoelectronic applications.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"8 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202401365","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Lead halide perovskites have emerged as attractive X-ray detector materials, owing to properties such as strong X-ray stopping power, excellent carrier transport, and high sensitivity. Additionally, they can be easily prepared by using solution-based synthesis approaches. However, traditional 3D (three-dimensional) perovskites X-ray detectors have shown limited application due to high dark currents generated under bias voltage as a result of strong ion migration. In this work, an X-ray detector with a vertical structure device is demonstrated using 2D (two-dimensional) histamine lead halide perovskite single crystal HAPbI4 (HPI, HA = histamine). Due to the dielectric screening effect of diamine and the vertical structure of the HPI device, the fabricated detector shows a sensitivity of 7737 µC Gyair−1 cm−2 under a bias voltage of 30 V. Furthermore, the detector shows a sensitivity of 293 µC Gyair−1 cm−2 and detection limit of 51.38 nGyair s−1 without bias voltage, wherein the dark current is almost completely suppressed. All of these properties indicate the X-ray detection device is a promising candidate for next-generation optoelectronic applications.
期刊介绍:
Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications.
As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics.
The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.