Optothermal-Enabled Reconfigurable Colloidal Photonic Crystals for Color and Spectrum Manipulation

IF 9.8 1区 物理与天体物理 Q1 OPTICS Laser & Photonics Reviews Pub Date : 2024-11-16 DOI:10.1002/lpor.202400889
Jianxing Zhou, Yuhang Peng, Jiajie Chen, Xiaoqi Dai, Yili Zhong, Peng Du, Zhengtian Jin, Yinyue Ji, Yuye Wang, Ho Pui Ho, Junle Qu, Yonghong Shao
{"title":"Optothermal-Enabled Reconfigurable Colloidal Photonic Crystals for Color and Spectrum Manipulation","authors":"Jianxing Zhou, Yuhang Peng, Jiajie Chen, Xiaoqi Dai, Yili Zhong, Peng Du, Zhengtian Jin, Yinyue Ji, Yuye Wang, Ho Pui Ho, Junle Qu, Yonghong Shao","doi":"10.1002/lpor.202400889","DOIUrl":null,"url":null,"abstract":"Colloidal photonic crystals (CPCs) are extensively utilized in nanoscale light manipulation due to their periodic dielectric structure. However, achieving spatial reconfigurability in CPCs remains a significant challenge, despite its importance for broader photonic applications in colloidal science. In this study, an optically induced thermoelectric field is generated by adding ionic surfactants to the solution, leading to the efficient formation of tightly assembled nanoparticles that exhibit the characteristics of CPC, which is termed optothermo-CPC. Specifically, this CPC exhibits excellent spatial reconfigurability through the tuning of the optically induced thermoelectric field. This allows for the remote control of its position and shape, in a real-time and high-precision manner. Additionally, by changing the particle size, it is possible to tune the transmission spectrum and color. Additionally, optothermo-CPC can navigate obstacles and possess a robust self-healing ability. These highly adaptable and reconfigurable properties endow CPCs with significant potential for various photonic applications within complex fluidic environments.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"18 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202400889","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Colloidal photonic crystals (CPCs) are extensively utilized in nanoscale light manipulation due to their periodic dielectric structure. However, achieving spatial reconfigurability in CPCs remains a significant challenge, despite its importance for broader photonic applications in colloidal science. In this study, an optically induced thermoelectric field is generated by adding ionic surfactants to the solution, leading to the efficient formation of tightly assembled nanoparticles that exhibit the characteristics of CPC, which is termed optothermo-CPC. Specifically, this CPC exhibits excellent spatial reconfigurability through the tuning of the optically induced thermoelectric field. This allows for the remote control of its position and shape, in a real-time and high-precision manner. Additionally, by changing the particle size, it is possible to tune the transmission spectrum and color. Additionally, optothermo-CPC can navigate obstacles and possess a robust self-healing ability. These highly adaptable and reconfigurable properties endow CPCs with significant potential for various photonic applications within complex fluidic environments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于色彩和光谱操纵的光热可重构胶体光子晶体
胶体光子晶体(CPC)因其周期性介电结构而被广泛用于纳米级光操纵。然而,实现 CPC 的空间可重构性仍然是一项重大挑战,尽管它对胶体科学中更广泛的光子应用非常重要。在本研究中,通过在溶液中添加离子表面活性剂,产生了光诱导热电场,从而有效地形成了表现出 CPC 特性的紧密组装的纳米粒子,这种粒子被称为 optothermo-CPC。具体来说,这种 CPC 通过调整光诱导热电场,表现出卓越的空间可重构性。这样就可以实时、高精度地远程控制其位置和形状。此外,通过改变颗粒大小,还可以调整透射光谱和颜色。此外,optothermo-CPC 还能导航障碍物,并具有强大的自愈能力。这些高度适应性和可重新配置的特性赋予了 CPC 在复杂流体环境中各种光子应用的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
期刊最新文献
Highly Reversible Tuning of Light-Matter Interactions in Van der Waals Materials Coupled with Hydrogel-Assisted Optical Cavity Highly Intelligent Forward Design of Metamaterials Empowered by Circuit-Physics-Driven Deep Learning Regulating Second-Harmonic Generation in 2D Chiral Perovskites Through Achiral Organic Spacer Cation Alloying Strategy A Polarization-Insensitive and Adaptively-Blazed Meta-Grating Based on Dispersive Metasurfaces Efficient Simultaneous Second Harmonic Generation and Dispersive Wave Generation in Lithium Niobate Thin Film
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1