Ultrafast Ion Transport in 2D Confined MXene for Improved Electrochemical Performance: Boron-Atom-Substituted -OH Termination.

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-11-26 Epub Date: 2024-11-18 DOI:10.1021/acsnano.4c12874
Zhaoxi Liu, Yapeng Tian, Jian Yang, Song Xu, Qingyong Tian, Pengfei Yan, Buxing Han, Qun Xu
{"title":"Ultrafast Ion Transport in 2D Confined MXene for Improved Electrochemical Performance: Boron-Atom-Substituted -OH Termination.","authors":"Zhaoxi Liu, Yapeng Tian, Jian Yang, Song Xu, Qingyong Tian, Pengfei Yan, Buxing Han, Qun Xu","doi":"10.1021/acsnano.4c12874","DOIUrl":null,"url":null,"abstract":"<p><p>Regulating the surface termination of a confined space to achieve ultrafast ion transport remains an ongoing challenge. Two-dimensional (2D) MXenes possess adjustable structures and interlayer spacing, which provide an ideal platform for in-depth investigation of ion transport in 2D confined space; however, the strong interaction of the negatively charged terminations in MXenes hinders the transport of intercalated cations. In this work, we proposed a strategy that precisely regulates the surface modification of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene with the weak polarity of boron atoms (SCB-MXene) via the distinct effect of supercritical CO<sub>2</sub>. This not only could effectively substitute -OH termination in MXene but also can prevent the loss of -O active sites, and then, both ultrafast ion transport and high volumetric capacitance can be achieved simultaneously. Ideally, a volumetric capacitance up to 742.7 C cm<sup>-3</sup> at 1000 mV s<sup>-1</sup> for the SCB-MXene film as pseudocapacitive materials that provides an energy density of 66.3 Wh L<sup>-1</sup> even at an ultrahigh power density of 132.5 kW L<sup>-1</sup> is obtained, which is a prominent record of energy density and power density reported up to now. Subsequently, it can be used in large-scale energy storage and conversion devices.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"32950-32958"},"PeriodicalIF":16.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12874","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Regulating the surface termination of a confined space to achieve ultrafast ion transport remains an ongoing challenge. Two-dimensional (2D) MXenes possess adjustable structures and interlayer spacing, which provide an ideal platform for in-depth investigation of ion transport in 2D confined space; however, the strong interaction of the negatively charged terminations in MXenes hinders the transport of intercalated cations. In this work, we proposed a strategy that precisely regulates the surface modification of Ti3C2Tx MXene with the weak polarity of boron atoms (SCB-MXene) via the distinct effect of supercritical CO2. This not only could effectively substitute -OH termination in MXene but also can prevent the loss of -O active sites, and then, both ultrafast ion transport and high volumetric capacitance can be achieved simultaneously. Ideally, a volumetric capacitance up to 742.7 C cm-3 at 1000 mV s-1 for the SCB-MXene film as pseudocapacitive materials that provides an energy density of 66.3 Wh L-1 even at an ultrahigh power density of 132.5 kW L-1 is obtained, which is a prominent record of energy density and power density reported up to now. Subsequently, it can be used in large-scale energy storage and conversion devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改善电化学性能的二维封闭 MXene 中的超快离子传输:硼原子取代 -OH 终止。
调节密闭空间的表面终端以实现超快离子传输仍然是一个持续的挑战。二维(2D)MXenes 具有可调节的结构和层间间距,这为深入研究二维密闭空间中的离子传输提供了理想平台;然而,MXenes 中带负电荷的终端的强相互作用阻碍了插层阳离子的传输。在这项工作中,我们提出了一种策略,即通过超临界二氧化碳的独特效应,精确调节硼原子弱极性的 Ti3C2Tx MXene(SCB-MXene)的表面改性。这不仅能有效替代 MXene 中的 -OH 终止,还能防止 -O 活性位点的损失,从而同时实现超快离子传输和高体积电容。理想情况下,SCB-MXene 薄膜作为伪电容材料在 1000 mV s-1 时的体积电容高达 742.7 C cm-3,即使在 132.5 kW L-1 的超高功率密度下也能提供 66.3 Wh L-1 的能量密度,这是迄今为止所报道的能量密度和功率密度的最高纪录。因此,它可用于大规模的能量存储和转换装置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
borane tetrahydrofuran complex solution
阿拉丁
THF
阿拉丁
LiCl
阿拉丁
LiF
阿拉丁
HF
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
A High-Performance Artificial Olfactory Chip for Real-Time Cold Chain Food Freshness Monitoring. Explosion-like Redispersion via Ejection of "Hot Molecules" In Situ Generated by Exothermic Reaction. Spatiotemporal Imaging of miRNA in Granulosa Cells from Patients with Polycystic Ovary Syndrome by Near-Infrared Light-Activated DNA Nanoprobes. van der Waals Engineering for Discrete Control of Homogeneous and Inhomogeneous Exciton Broadening in Monolayer 2D Semiconductors Direct Observation of Ultrafast Defect-Bound and Free Exciton Dynamics in Defect-Engineered WS2 Monolayers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1