Kexin Fan, Qingyang Li, Yuping Qian, Ludan Zhang, Di Lu, Ling Zhu, Shouke Yan, Bowei Xu, Yuguang Wang
{"title":"Enhanced Photothermal Therapy under Low-Power Near-Infrared Irradiation Enabled by a Si-Cyclopentadithiophene-Based Organic Molecule.","authors":"Kexin Fan, Qingyang Li, Yuping Qian, Ludan Zhang, Di Lu, Ling Zhu, Shouke Yan, Bowei Xu, Yuguang Wang","doi":"10.1002/adhm.202403248","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the inadequate photothermal conversion efficiency (PCE), most photothermal agents (PTAs) have to be used under high-power near-infrared (NIR) irradiation, which significantly exceeds medical safety standards, for achieving effective photothermal therapy (PTT) in antitumor treatment. This significantly hinders practical PTT application. Herein, three acceptor-donor-acceptor(A-D-A)-type molecules are synthesized based on cyclopentadithiophene unit to develop effective PTAs. By incorporating the large-size Si atom in the A-D-A molecules, the photosensitizer displays an increased packing distance in the aggregate state, leading to a blue-shifted absorption spectrum that better matches the medial laser wavelength. Also, the Si incorporation strategy elevates the nonradiative decay rate constants (k<sub>nr</sub>) of the A-D-A photosensitizer, and thereby a further enhancement in PCE is achieved for the PTA. Consequently, the SiO-4F-based nanoparticles exhibited 64.23% PCE, with excellent biosafety and photothermal stability. Under NIR irradiation with medical safety (808 nm, 0.33 W cm<sup>-2</sup>), SiO-4F nanoparticles with 100 µg mL<sup>-1</sup> yield a death rate of over 91% for diverse tumor cells. Moreover, in vivo experiments, SiO-4F-based PTT effectively inhibited and eliminated tumors. These findings suggest that the Si-incorporated CDPT is promising for constructing effective A-D-A photosensitizers, enabling the PTT under NIR irradiation that meets medical safety standards.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2403248"},"PeriodicalIF":10.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202403248","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the inadequate photothermal conversion efficiency (PCE), most photothermal agents (PTAs) have to be used under high-power near-infrared (NIR) irradiation, which significantly exceeds medical safety standards, for achieving effective photothermal therapy (PTT) in antitumor treatment. This significantly hinders practical PTT application. Herein, three acceptor-donor-acceptor(A-D-A)-type molecules are synthesized based on cyclopentadithiophene unit to develop effective PTAs. By incorporating the large-size Si atom in the A-D-A molecules, the photosensitizer displays an increased packing distance in the aggregate state, leading to a blue-shifted absorption spectrum that better matches the medial laser wavelength. Also, the Si incorporation strategy elevates the nonradiative decay rate constants (knr) of the A-D-A photosensitizer, and thereby a further enhancement in PCE is achieved for the PTA. Consequently, the SiO-4F-based nanoparticles exhibited 64.23% PCE, with excellent biosafety and photothermal stability. Under NIR irradiation with medical safety (808 nm, 0.33 W cm-2), SiO-4F nanoparticles with 100 µg mL-1 yield a death rate of over 91% for diverse tumor cells. Moreover, in vivo experiments, SiO-4F-based PTT effectively inhibited and eliminated tumors. These findings suggest that the Si-incorporated CDPT is promising for constructing effective A-D-A photosensitizers, enabling the PTT under NIR irradiation that meets medical safety standards.
期刊介绍:
Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.