Hung-Vu Tran, Tuan Thanh Dang, Nguyen Hoang Nguyen, Huyen Thu Tran, Dung Tien Nguyen, Dang Van Do, Thanh Son Le, Thuong Hanh Ngo, Yawa K E Late, Prince Nana Amaniampong, Eugene Fletcher, Tran Quang Hung, Yuran Cheng, Tuan Khoa Nguyen, Tuan Sang Tran, Jun Zhang, Hongjie An, Nam-Trung Nguyen, Quang Thang Trinh
{"title":"Methanol Activation: Strategies for Utilization of Methanol as C1 Building Block in Sustainable Organic Synthesis.","authors":"Hung-Vu Tran, Tuan Thanh Dang, Nguyen Hoang Nguyen, Huyen Thu Tran, Dung Tien Nguyen, Dang Van Do, Thanh Son Le, Thuong Hanh Ngo, Yawa K E Late, Prince Nana Amaniampong, Eugene Fletcher, Tran Quang Hung, Yuran Cheng, Tuan Khoa Nguyen, Tuan Sang Tran, Jun Zhang, Hongjie An, Nam-Trung Nguyen, Quang Thang Trinh","doi":"10.1002/cssc.202401974","DOIUrl":null,"url":null,"abstract":"<p><p>The development of efficient and sustainable chemical processes which use greener reagents and solvents, currently play an important role in current research. Methanol, a cheap and readily available resource from chemical industry, could be activated by transition metal catalysts. This review focuses in covering the recent five-years literature and provides a systematic summary of strategies for methanol activation and the use in organic chemistry. Based on these strategies, many new synthetic methods have been developed for methanol utilization as the C1 building block in methylation, hydromethylation, aminomethylation, formylation reactions, as well as the syntheses of urea derivatives and heterocycles. The achievements, synthetic applications, limitations, some advanced approaches, and future perspectives of the methanol activation methodologies have been described in this review.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401974"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401974","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of efficient and sustainable chemical processes which use greener reagents and solvents, currently play an important role in current research. Methanol, a cheap and readily available resource from chemical industry, could be activated by transition metal catalysts. This review focuses in covering the recent five-years literature and provides a systematic summary of strategies for methanol activation and the use in organic chemistry. Based on these strategies, many new synthetic methods have been developed for methanol utilization as the C1 building block in methylation, hydromethylation, aminomethylation, formylation reactions, as well as the syntheses of urea derivatives and heterocycles. The achievements, synthetic applications, limitations, some advanced approaches, and future perspectives of the methanol activation methodologies have been described in this review.
期刊介绍:
ChemSusChem
Impact Factor (2016): 7.226
Scope:
Interdisciplinary journal
Focuses on research at the interface of chemistry and sustainability
Features the best research on sustainability and energy
Areas Covered:
Chemistry
Materials Science
Chemical Engineering
Biotechnology