{"title":"Salivary heat shock protein 70 as a potential non-invasive biomarker of environmental thermal stress in dairy cattle.","authors":"Kandasamy Rajamanickam, Pasuvalingam Visha, Ayyasamy Elango, Venkatasubramanian Leela","doi":"10.1007/s00484-024-02826-y","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aims to explore the potential biomarker application of salivary heat shock 70 kDa protein in detecting thermal stress in dairy animals noninvasively. The study spans for 45 days during the mid-summer season (April-May), involving twelve multiparous non-pregnant adult Jersey crossbred cows by randomly allocating them into groups (six animals in each group). The control animals were maintained in the shed, whereas the thermal stress group animals were exposed to environment heat between 10:00 h to 16.00 h and they were feed and watered ad libitum. During the experimental period, the hematobiochemical, physiological, behavioural, nutritional and production responses were recorded and the whole blood and saliva were collected fortnightly. Results revealed significant increase in WBC, AST, ALP, blood urea nitrogen, triglycerides, cholesterol, HDL, blood and salivary cortisol, respiratory rate, rectal temperature, skin temperature of neck, lumbar and forelimb regions, standing time, salivary and blood HSP70 mRNA expression and their protein concentrations in heat stressed animals. In addition, RBC, haemoglobin, MCV, PCV, platelet, platelet-large cell ratio (PLCR), lying time, feed intake, milk yield and rumination time were significantly decreased in thermally stress animals. Furthermore, ROC curve analysis revealed the biomarker potential of these significantly altered parameters with 100% sensitivity and specificity for predicting environmental heat stress in dairy cows with AUC and Youden's - index of 1.00 except platelet. Moreover, salivary HSP70 demonstrated significant correlation with these biomarkers. Noteworthily, salivary HSP70 also exhibited strong association with blood HSP70 and salivary cortisol. Furthermore, salivary HSP70 revealed 100% sensitivity and specificity in discriminating the dairy cattle succumbed to heat stress from healthy. In conclusion, the present study provides a newer insight into the multifaceted roles of HSP70 and identified salivary heat shock 70 kDa protein as a potential, reliable and more sensitive non-invasive biomarker for identifying environmental heat stress in dairy cattle.</p>","PeriodicalId":588,"journal":{"name":"International Journal of Biometeorology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biometeorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00484-024-02826-y","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The present study aims to explore the potential biomarker application of salivary heat shock 70 kDa protein in detecting thermal stress in dairy animals noninvasively. The study spans for 45 days during the mid-summer season (April-May), involving twelve multiparous non-pregnant adult Jersey crossbred cows by randomly allocating them into groups (six animals in each group). The control animals were maintained in the shed, whereas the thermal stress group animals were exposed to environment heat between 10:00 h to 16.00 h and they were feed and watered ad libitum. During the experimental period, the hematobiochemical, physiological, behavioural, nutritional and production responses were recorded and the whole blood and saliva were collected fortnightly. Results revealed significant increase in WBC, AST, ALP, blood urea nitrogen, triglycerides, cholesterol, HDL, blood and salivary cortisol, respiratory rate, rectal temperature, skin temperature of neck, lumbar and forelimb regions, standing time, salivary and blood HSP70 mRNA expression and their protein concentrations in heat stressed animals. In addition, RBC, haemoglobin, MCV, PCV, platelet, platelet-large cell ratio (PLCR), lying time, feed intake, milk yield and rumination time were significantly decreased in thermally stress animals. Furthermore, ROC curve analysis revealed the biomarker potential of these significantly altered parameters with 100% sensitivity and specificity for predicting environmental heat stress in dairy cows with AUC and Youden's - index of 1.00 except platelet. Moreover, salivary HSP70 demonstrated significant correlation with these biomarkers. Noteworthily, salivary HSP70 also exhibited strong association with blood HSP70 and salivary cortisol. Furthermore, salivary HSP70 revealed 100% sensitivity and specificity in discriminating the dairy cattle succumbed to heat stress from healthy. In conclusion, the present study provides a newer insight into the multifaceted roles of HSP70 and identified salivary heat shock 70 kDa protein as a potential, reliable and more sensitive non-invasive biomarker for identifying environmental heat stress in dairy cattle.
期刊介绍:
The Journal publishes original research papers, review articles and short communications on studies examining the interactions between living organisms and factors of the natural and artificial atmospheric environment.
Living organisms extend from single cell organisms, to plants and animals, including humans. The atmospheric environment includes climate and weather, electromagnetic radiation, and chemical and biological pollutants. The journal embraces basic and applied research and practical aspects such as living conditions, agriculture, forestry, and health.
The journal is published for the International Society of Biometeorology, and most membership categories include a subscription to the Journal.