Construction of natural hydrogels consisting of oxidized dextran, quaternized chitosan and cuttlefish ink nanoparticles for treating diabetic oral ulcers.
Jianan Song, Zhenni Geng, Xinrui Luan, Diya Zhang, Qiong Wang, Lai Pan, Xiaoyang Yu, Wei Dong, Dalei Wu, Shengye You
{"title":"Construction of natural hydrogels consisting of oxidized dextran, quaternized chitosan and cuttlefish ink nanoparticles for treating diabetic oral ulcers.","authors":"Jianan Song, Zhenni Geng, Xinrui Luan, Diya Zhang, Qiong Wang, Lai Pan, Xiaoyang Yu, Wei Dong, Dalei Wu, Shengye You","doi":"10.1016/j.ijbiomac.2024.137737","DOIUrl":null,"url":null,"abstract":"<p><p>Current approaches to managing diabetic oral ulcers are often inadequate in medical settings due to risks of bacterial contamination, oxidative harm, and hindered blood vessel growth during recovery. Here, we have developed a hydrogel (OQC2) consisting of oxidized dextran, quaternized chitosan, and melanin nanoparticles sourced from cuttlefish ink to effectively treat wounds from diabetic oral ulcers. Initially, by administering a straightforward local injection, a protection barrier forms over the mucosal injury, promptly stopping bleeding and neutralizing inflammatory agents. The OQC2 excels in innate antibacterial activity and can effectively remove reactive oxygen species, aiding in bacterial eradication and managing oxidative states, thereby hastening the wound's transition from inflammation to tissue growth. Moreover, the OQC2 features a three-dimensional structure made up of elements sourced from natural materials, potentially making it an excellent resource for providing structural and nutritional support to cells. This support encourages cell attachment, movement, and growth, as well as further blood vessel formation in the process of mucosal remodeling. Both in vitro and in vivo trials indicate that the OQC2 significantly speeds up the repair of mucosal wounds, presenting a viable option for treating diabetic oral ulcers.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137737"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137737","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Current approaches to managing diabetic oral ulcers are often inadequate in medical settings due to risks of bacterial contamination, oxidative harm, and hindered blood vessel growth during recovery. Here, we have developed a hydrogel (OQC2) consisting of oxidized dextran, quaternized chitosan, and melanin nanoparticles sourced from cuttlefish ink to effectively treat wounds from diabetic oral ulcers. Initially, by administering a straightforward local injection, a protection barrier forms over the mucosal injury, promptly stopping bleeding and neutralizing inflammatory agents. The OQC2 excels in innate antibacterial activity and can effectively remove reactive oxygen species, aiding in bacterial eradication and managing oxidative states, thereby hastening the wound's transition from inflammation to tissue growth. Moreover, the OQC2 features a three-dimensional structure made up of elements sourced from natural materials, potentially making it an excellent resource for providing structural and nutritional support to cells. This support encourages cell attachment, movement, and growth, as well as further blood vessel formation in the process of mucosal remodeling. Both in vitro and in vivo trials indicate that the OQC2 significantly speeds up the repair of mucosal wounds, presenting a viable option for treating diabetic oral ulcers.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.