Ana Barragán, Maxence Urbani, Aurelio Gallardo, Elena Pérez-Elvira, Óscar Jover, Koen Lauwaet, José M Gallego, Rodolfo Miranda, Marco Di Giovannantonio, David Écija, Tomás Torres, José I Urgel
{"title":"On-Surface Synthesis of Covalently-Linked Carbaporphyrinoid-Based Low-Dimensional Polymers.","authors":"Ana Barragán, Maxence Urbani, Aurelio Gallardo, Elena Pérez-Elvira, Óscar Jover, Koen Lauwaet, José M Gallego, Rodolfo Miranda, Marco Di Giovannantonio, David Écija, Tomás Torres, José I Urgel","doi":"10.1002/smll.202408085","DOIUrl":null,"url":null,"abstract":"<p><p>The synthesis of porphyrinoid-based low-dimensional polymers has recently attracted considerable interest in view of their intriguing electronic, optical, and catalytic properties. Here, this is introduced by the surface-assisted synthesis of two carbaporphyrinoid-based polymers of increasing dimensionality under ultrahigh-vacuum conditions. The structural and electronic characterization of the resulting polymers has been performed by scanning tunneling and non-contact atomic force microscopies, complemented by theoretical modeling. First, a carbon-carbon coupling between dicarbahemiporphyrazine precursors is achieved by thermal activation of their isopropyl substituents via a [3+3] cycloaromatization, giving rise to one-dimensional (1D) polymers. Second, the same precursor is functionalized with chlorine atoms to complement the [3+3] cycloaromatization with orthogonal dehalogenation and homocoupling, affording two-dimensional (2D) molecular nanostructures. In addition, both low-dimensional free-base porphyrinoid-based polymers are exposed to an atomic flux of cobalt atoms, giving rise to cobalt-metalated macrocycles, with the metal atoms coordinated only to the two pyrrolic nitrogens, in contrast to the typical four-fold coordination that occurs inside tetrapyrroles. This on-surface protocol renders atomically precise covalently-linked porphyrinoid polymers and provides promising model systems toward the exploration of low-coordinated metals with utility in diverse technological areas.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":" ","pages":"e2408085"},"PeriodicalIF":13.0000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408085","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of porphyrinoid-based low-dimensional polymers has recently attracted considerable interest in view of their intriguing electronic, optical, and catalytic properties. Here, this is introduced by the surface-assisted synthesis of two carbaporphyrinoid-based polymers of increasing dimensionality under ultrahigh-vacuum conditions. The structural and electronic characterization of the resulting polymers has been performed by scanning tunneling and non-contact atomic force microscopies, complemented by theoretical modeling. First, a carbon-carbon coupling between dicarbahemiporphyrazine precursors is achieved by thermal activation of their isopropyl substituents via a [3+3] cycloaromatization, giving rise to one-dimensional (1D) polymers. Second, the same precursor is functionalized with chlorine atoms to complement the [3+3] cycloaromatization with orthogonal dehalogenation and homocoupling, affording two-dimensional (2D) molecular nanostructures. In addition, both low-dimensional free-base porphyrinoid-based polymers are exposed to an atomic flux of cobalt atoms, giving rise to cobalt-metalated macrocycles, with the metal atoms coordinated only to the two pyrrolic nitrogens, in contrast to the typical four-fold coordination that occurs inside tetrapyrroles. This on-surface protocol renders atomically precise covalently-linked porphyrinoid polymers and provides promising model systems toward the exploration of low-coordinated metals with utility in diverse technological areas.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.