Neurofilament heavy phosphorylated epitopes as biomarkers in ageing and neurodegenerative disease.

IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Neurochemistry Pub Date : 2024-11-18 DOI:10.1111/jnc.16261
Laura F De Paoli, Matthew T K Kirkcaldie, Anna E King, Jessica M Collins
{"title":"Neurofilament heavy phosphorylated epitopes as biomarkers in ageing and neurodegenerative disease.","authors":"Laura F De Paoli, Matthew T K Kirkcaldie, Anna E King, Jessica M Collins","doi":"10.1111/jnc.16261","DOIUrl":null,"url":null,"abstract":"<p><p>From the day we are born, the nervous system is subject to insult, disease and degeneration. Aberrant phosphorylation states in neurofilaments, the major intermediate filaments of the neuronal cytoskeleton, accompany and mediate many pathological processes in degenerative disease. Neuronal damage, degeneration and death can release these internal components to the extracellular space and eventually the cerebrospinal fluid and blood. Sophisticated assay techniques are increasingly able to detect their presence and phosphorylation states at very low levels, increasing their utility as biomarkers and providing insights and differential diagnosis for the earliest stages of disease. Although a variety of studies focus on single or small clusters of neurofilament phosphorylated epitopes, this review offers a wider perspective of the phosphorylation landscape of the neurofilament heavy subunit, a major intermediate filament component in both ageing and disease.</p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neurochemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jnc.16261","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

From the day we are born, the nervous system is subject to insult, disease and degeneration. Aberrant phosphorylation states in neurofilaments, the major intermediate filaments of the neuronal cytoskeleton, accompany and mediate many pathological processes in degenerative disease. Neuronal damage, degeneration and death can release these internal components to the extracellular space and eventually the cerebrospinal fluid and blood. Sophisticated assay techniques are increasingly able to detect their presence and phosphorylation states at very low levels, increasing their utility as biomarkers and providing insights and differential diagnosis for the earliest stages of disease. Although a variety of studies focus on single or small clusters of neurofilament phosphorylated epitopes, this review offers a wider perspective of the phosphorylation landscape of the neurofilament heavy subunit, a major intermediate filament component in both ageing and disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为老化和神经退行性疾病生物标志物的神经丝蛋白重磷酸化表位。
从我们出生的那一天起,神经系统就开始遭受损伤、疾病和退化。神经元细胞骨架的主要中间丝--神经丝的异常磷酸化状态,伴随并介导着退行性疾病的许多病理过程。神经元损伤、变性和死亡会将这些内部成分释放到细胞外空间,最终进入脑脊液和血液。先进的检测技术越来越能在极低水平上检测到它们的存在和磷酸化状态,从而提高了它们作为生物标记物的效用,并为疾病的早期阶段提供洞察力和鉴别诊断。尽管各种研究都侧重于神经丝蛋白磷酸化表位的单个或小簇,但本综述从更广阔的视角探讨了神经丝蛋白重亚基的磷酸化状况,神经丝蛋白重亚基是老化和疾病中的主要中间丝成分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neurochemistry
Journal of Neurochemistry 医学-神经科学
CiteScore
9.30
自引率
2.10%
发文量
181
审稿时长
2.2 months
期刊介绍: Journal of Neurochemistry focuses on molecular, cellular and biochemical aspects of the nervous system, the pathogenesis of neurological disorders and the development of disease specific biomarkers. It is devoted to the prompt publication of original findings of the highest scientific priority and value that provide novel mechanistic insights, represent a clear advance over previous studies and have the potential to generate exciting future research.
期刊最新文献
Neurofilament heavy phosphorylated epitopes as biomarkers in ageing and neurodegenerative disease. A special focus on polyadenylation and alternative polyadenylation in neurodegenerative diseases: A systematic review. Alterations of endocannabinoid signaling and microglia reactivity in the retinas of AD-like mice precede the onset of hippocampal β-amyloid plaques. Convergent effects of synthetic glucocorticoid dexamethasone and amyloid beta in human olfactory neurosphere-derived cells. Inhibition of iron-induced cofilin activation and inflammation in microglia by a novel cofilin inhibitor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1