首页 > 最新文献

Journal of Neurochemistry最新文献

英文 中文
The Role of the Urea Cycle in the Alzheimer's Disease Brain
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-28 DOI: 10.1111/jnc.70033
Najlaa A. Al-Thani, Gavin S. Stewart, Derek A. Costello

Alzheimer's Disease (AD) is a neurodegenerative disorder classified as the leading form of dementia in the elderly. Classical hallmarks of AD pathology believed to cause AD include Amyloid-beta (Aβ) plaques as well as neurofibrillary tau tangles (NTT). However, research into these classical hallmarks has failed to account for a causative link or therapeutic success. More recently, metabolic hallmarks of AD pathology have become a popular avenue of research. Elevated urea and ammonia detected in cases of AD point towards a dysfunctional urea cycle involved in AD. This review covers the expansive body of literature surrounding the work of researchers deciphering the role of the urea cycle in AD pathology through the study of urea cycle enzymes, metabolites, and transporters in the AD brain. Urea cycle enzymes of interest in AD pathology include OTC, NOS isoforms, ARG1, ARG2, MAOB, and ODC, which all present as promising therapeutic targets. Urea metabolites indicated in AD pathology have varying concentrations across the regions of the brain and the different cell types (neurons, microglia, astrocytes). Finally, the role of UT-B as a clearance modulator presents this protein as a key target for research in the role of the urea cycle in the AD brain. In the future, these key enzymes, pathways, and proteins relating to the urea cycle in AD should be further investigated to better understand the cell-specific urea cycle profiles in the AD brain and uncover their therapeutic potential.

{"title":"The Role of the Urea Cycle in the Alzheimer's Disease Brain","authors":"Najlaa A. Al-Thani,&nbsp;Gavin S. Stewart,&nbsp;Derek A. Costello","doi":"10.1111/jnc.70033","DOIUrl":"https://doi.org/10.1111/jnc.70033","url":null,"abstract":"<p>Alzheimer's Disease (AD) is a neurodegenerative disorder classified as the leading form of dementia in the elderly. Classical hallmarks of AD pathology believed to cause AD include Amyloid-beta (Aβ) plaques as well as neurofibrillary tau tangles (NTT). However, research into these classical hallmarks has failed to account for a causative link or therapeutic success. More recently, metabolic hallmarks of AD pathology have become a popular avenue of research. Elevated urea and ammonia detected in cases of AD point towards a dysfunctional urea cycle involved in AD. This review covers the expansive body of literature surrounding the work of researchers deciphering the role of the urea cycle in AD pathology through the study of urea cycle enzymes, metabolites, and transporters in the AD brain. Urea cycle enzymes of interest in AD pathology include OTC, NOS isoforms, ARG1, ARG2, MAOB, and ODC, which all present as promising therapeutic targets. Urea metabolites indicated in AD pathology have varying concentrations across the regions of the brain and the different cell types (neurons, microglia, astrocytes). Finally, the role of UT-B as a clearance modulator presents this protein as a key target for research in the role of the urea cycle in the AD brain. In the future, these key enzymes, pathways, and proteins relating to the urea cycle in AD should be further investigated to better understand the cell-specific urea cycle profiles in the AD brain and uncover their therapeutic potential.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 3","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.70033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Serotonergic Psychedelics Rapidly Modulate Evoked Glutamate Release in Cultured Cortical Neurons 羟色胺能迷幻剂快速调节培养皮层神经元中诱发的谷氨酸释放
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-28 DOI: 10.1111/jnc.70020
Aneta Petrušková, Debarpan Guhathakurta, Enes Yağız Akdaş, Bartomeu Perelló-Amorós, Renato Frischknecht, Eva-Maria Weiss, Tomáš Páleníček, Anna Fejtová

The serotonergic psychedelics psilocybin, LSD and DMT hold great promise for the development of new treatments for psychiatric conditions such as major depressive disorder, addiction and end-of-life anxiety. Previous studies in both animals and humans have confirmed the effects of these drugs on neuronal activity and plasticity. However, the understanding of the mechanisms of action of these substances is limited. Here we show rapid effects of psychedelics on presynaptic properties, using live cell imaging at the level of single synapses in primary rat cortical neurons. Using the genetically encoded reporter of synaptic vesicle fusion synaptopHluorin, we detected a reduced fraction of synaptic vesicles that fused in response to mild or strong electrical stimulation 3–30 min after application of serotonergic psychedelics. These effects were transient and no longer present 24 h after treatment. While DMT only reduced the total recycling pool, LSD and psilocin also reduced the size of the readily releasable vesicle pool. Imaging with the sensors for glutamate, iGluSnFR, and presynaptic calcium, synGCaMP6, showed that while psilocin and DMT increased evoked glutamate release, LSD and psilocin reduced evoked presynaptic calcium levels. Interestingly, psilocin also affected short-term plasticity leading to a depression of responses to paired stimuli. The rapid and drug-specific modulation of glutamatergic neurotransmission described in this study may contribute to distinct anxiolytic and antidepressant properties of serotonergic psychedelics.

{"title":"Serotonergic Psychedelics Rapidly Modulate Evoked Glutamate Release in Cultured Cortical Neurons","authors":"Aneta Petrušková,&nbsp;Debarpan Guhathakurta,&nbsp;Enes Yağız Akdaş,&nbsp;Bartomeu Perelló-Amorós,&nbsp;Renato Frischknecht,&nbsp;Eva-Maria Weiss,&nbsp;Tomáš Páleníček,&nbsp;Anna Fejtová","doi":"10.1111/jnc.70020","DOIUrl":"https://doi.org/10.1111/jnc.70020","url":null,"abstract":"<p>The serotonergic psychedelics psilocybin, LSD and DMT hold great promise for the development of new treatments for psychiatric conditions such as major depressive disorder, addiction and end-of-life anxiety. Previous studies in both animals and humans have confirmed the effects of these drugs on neuronal activity and plasticity. However, the understanding of the mechanisms of action of these substances is limited. Here we show rapid effects of psychedelics on presynaptic properties, using live cell imaging at the level of single synapses in primary rat cortical neurons. Using the genetically encoded reporter of synaptic vesicle fusion synaptopHluorin, we detected a reduced fraction of synaptic vesicles that fused in response to mild or strong electrical stimulation 3–30 min after application of serotonergic psychedelics. These effects were transient and no longer present 24 h after treatment. While DMT only reduced the total recycling pool, LSD and psilocin also reduced the size of the readily releasable vesicle pool. Imaging with the sensors for glutamate, iGluSnFR, and presynaptic calcium, synGCaMP6, showed that while psilocin and DMT increased evoked glutamate release, LSD and psilocin reduced evoked presynaptic calcium levels. Interestingly, psilocin also affected short-term plasticity leading to a depression of responses to paired stimuli. The rapid and drug-specific modulation of glutamatergic neurotransmission described in this study may contribute to distinct anxiolytic and antidepressant properties of serotonergic psychedelics.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 3","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.70020","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143522020","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microglia-Mediated Synaptic Dysfunction Contributes to Chemotherapy-Related Cognitive Impairment
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-28 DOI: 10.1111/jnc.70024
Jingxiong Wang, Hua Zhang, Marc Augenreich, Luis Martinez-Lemus A, Zhenguo Liu, Xunlei Kang, Bo Lu, Hui-Ming Chang, Edward T. H. Yeh, Juan Cata, Srikant Rangaraju, Heike Wulff, De-Pei Li

Chemotherapy-related cognitive impairment (CRCI) significantly impacts cancer survivors. Due to unclear mechanisms, effective treatments for cognitive deficits are lacking. Here, we examined if microglia-mediated deficits in synaptic plasticity drive CRCI. Adult male mice were treated with the chemotherapeutic drugs 5-fluorouracil and leucovorin (5-Fu/LV, intraperitoneal injection, I.P.) on Days 1, 8, and 15 at a dosage of 50 mg/kg for 5-Fu and 90 mg/kg for LV for 3 weeks. Cognitive function was assessed using a novel object recognition (NOR) test 4 weeks after completion of 5-Fu/LV treatment. Compared with vehicle treatment, 5-Fu/LV treatment reduced the preference for exploring novel objects in the NOR test. Treatment with 5-Fu/LV increased the numbers of Iba1-positive microglial and CD68-positive/Iba1-positive microglia with shortened process lengths and diminished endpoints but decreased the number of phagocytotic (≤ 1 FITC-labeled beads) Iba1-positive microglia. Furthermore, 5-Fu/LV treatment reduced the long-term potentiation (LTP) recorded in the hippocampal CA1 region in response to a theta burst stimulation of the CA3-CA1 pathway and decreased the evoked N-methyl-D-aspartic acid receptor (NMDAR)-excitatory postsynaptic currents (NMDAR-EPSCs) in CA1 neurons. Cotreatment with the microglial inhibitor minocycline (33 mg/kg, daily for 3 weeks) restored cognitive deficits and microglial ramification, decreased the number of CD68-positive microglia, and reversed the reductions in LTP and the amplitude of NMDAR-EPSCs in 5-Fu/LV-treated mice. Our data suggest that microglial dysfunction and related synaptic dysfunction contribute to 5-Fu/LV-induced cognitive impairment.

{"title":"Microglia-Mediated Synaptic Dysfunction Contributes to Chemotherapy-Related Cognitive Impairment","authors":"Jingxiong Wang,&nbsp;Hua Zhang,&nbsp;Marc Augenreich,&nbsp;Luis Martinez-Lemus A,&nbsp;Zhenguo Liu,&nbsp;Xunlei Kang,&nbsp;Bo Lu,&nbsp;Hui-Ming Chang,&nbsp;Edward T. H. Yeh,&nbsp;Juan Cata,&nbsp;Srikant Rangaraju,&nbsp;Heike Wulff,&nbsp;De-Pei Li","doi":"10.1111/jnc.70024","DOIUrl":"https://doi.org/10.1111/jnc.70024","url":null,"abstract":"<div>\u0000 \u0000 <p>Chemotherapy-related cognitive impairment (CRCI) significantly impacts cancer survivors. Due to unclear mechanisms, effective treatments for cognitive deficits are lacking. Here, we examined if microglia-mediated deficits in synaptic plasticity drive CRCI. Adult male mice were treated with the chemotherapeutic drugs 5-fluorouracil and leucovorin (5-Fu/LV, intraperitoneal injection, I.P.) on Days 1, 8, and 15 at a dosage of 50 mg/kg for 5-Fu and 90 mg/kg for LV for 3 weeks. Cognitive function was assessed using a novel object recognition (NOR) test 4 weeks after completion of 5-Fu/LV treatment. Compared with vehicle treatment, 5-Fu/LV treatment reduced the preference for exploring novel objects in the NOR test. Treatment with 5-Fu/LV increased the numbers of Iba1-positive microglial and CD68-positive/Iba1-positive microglia with shortened process lengths and diminished endpoints but decreased the number of phagocytotic (≤ 1 FITC-labeled beads) Iba1-positive microglia. Furthermore, 5-Fu/LV treatment reduced the long-term potentiation (LTP) recorded in the hippocampal CA1 region in response to a theta burst stimulation of the CA3-CA1 pathway and decreased the evoked N-methyl-D-aspartic acid receptor (NMDAR)-excitatory postsynaptic currents (NMDAR-EPSCs) in CA1 neurons. Cotreatment with the microglial inhibitor minocycline (33 mg/kg, daily for 3 weeks) restored cognitive deficits and microglial ramification, decreased the number of CD68-positive microglia, and reversed the reductions in LTP and the amplitude of NMDAR-EPSCs in 5-Fu/LV-treated mice. Our data suggest that microglial dysfunction and related synaptic dysfunction contribute to 5-Fu/LV-induced cognitive impairment.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 \u0000 \u0000 </p>\u0000 </div>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 3","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143513607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium-Dependent Signaling in Astrocytes: Downstream Mechanisms and Implications for Cognition
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-24 DOI: 10.1111/jnc.70019
Alexandra Veiga, Daniela Sofia Abreu, José Duarte Dias, Patrícia Azenha, Sara Barsanti, João Filipe Oliveira

Astrocytes are glial cells recognized for their diverse roles in regulating brain circuit structure and function. They can sense and adapt to changes in the microenvironment due to their unique structural and biochemical properties. A key aspect of astrocytic function involves calcium (Ca2+)-dependent signaling, which serves as a fundamental mechanism for their interactions with neurons and other cells in the brain. However, while significant progress has been made in understanding the spatio-temporal properties of astrocytic Ca2+ signals, the downstream molecular pathways and exact mechanisms through which astrocytes decode these signals to regulate homeostatic and physiological processes remain poorly understood. To address this topic, we review here the available literature on the sources of intracellular Ca2+, as well as its downstream mechanisms and signaling pathways. We review the well-studied Ca2+-dependent exocytosis but draw attention to additional intracellular Ca2+-dependent mechanisms that are less understood and are, most likely, highly influential for many other cellular functions. Finally, we review how intracellular Ca2+ is thought to underlie neuron–astrocyte signaling in brain regions involved in cognitive processing.

{"title":"Calcium-Dependent Signaling in Astrocytes: Downstream Mechanisms and Implications for Cognition","authors":"Alexandra Veiga,&nbsp;Daniela Sofia Abreu,&nbsp;José Duarte Dias,&nbsp;Patrícia Azenha,&nbsp;Sara Barsanti,&nbsp;João Filipe Oliveira","doi":"10.1111/jnc.70019","DOIUrl":"https://doi.org/10.1111/jnc.70019","url":null,"abstract":"<p>Astrocytes are glial cells recognized for their diverse roles in regulating brain circuit structure and function. They can sense and adapt to changes in the microenvironment due to their unique structural and biochemical properties. A key aspect of astrocytic function involves calcium (Ca<sup>2+</sup>)-dependent signaling, which serves as a fundamental mechanism for their interactions with neurons and other cells in the brain. However, while significant progress has been made in understanding the spatio-temporal properties of astrocytic Ca<sup>2+</sup> signals, the downstream molecular pathways and exact mechanisms through which astrocytes decode these signals to regulate homeostatic and physiological processes remain poorly understood. To address this topic, we review here the available literature on the sources of intracellular Ca<sup>2+</sup>, as well as its downstream mechanisms and signaling pathways. We review the well-studied Ca<sup>2+</sup>-dependent exocytosis but draw attention to additional intracellular Ca<sup>2+</sup>-dependent mechanisms that are less understood and are, most likely, highly influential for many other cellular functions. Finally, we review how intracellular Ca<sup>2+</sup> is thought to underlie neuron–astrocyte signaling in brain regions involved in cognitive processing.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.70019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Upregulation of FMRP Is Involved in Neuropathic Pain by Regulating GluN2B Activation in Rat Spinal Cord
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-24 DOI: 10.1111/jnc.70022
Lei Chen, Xuejiao Guo, Long Zhang, Yunze Li, Li Zhou, Jinsong Zhao, Yujia Luo, Yanling Hu, Xiaowei Chen, Xianhui Kang, Xiangming Fang, Zhiying Feng

Fragile X mental retardation protein (FMRP) has been proposed to play a potential role in the pathogenesis of autonomy and nociceptive paresthesia. However, the involvement of spinal FMRP in neuropathic pain remains unexplored. Using a rat model of neuropathic pain induced by chronic constriction injury (CCI), our investigation demonstrated an upregulation of FMRP at 3, 7, and 14 days post-CCI operation in the spinal dorsal horn (SDH). Immunofluorescence staining revealed predominant FMRP expression in spinal neurons, which colocalized with Glutamate Ionotropic Receptor NMDA Type Subunit 2B (GluN2B). The Co-immunoprecipitation results suggested an interaction between spinal FMRP and GluN2B. Genetic knockout of the Fmr1 gene or transient interference with the FMRP protein alleviated CCI-induced pain hypersensitivity and suppressed the increase in spinal GluN2B expression. Conversely, intrathecal administration of the GluN2B-specific inhibitor Ifenprodil significantly suppressed the CCI-induced increase in spinal FMRP expression. In conclusion, our findings highlight the pivotal role of spinal FMRP in developing neuropathic pain and modulating GluN2B levels within the SDH. Furthermore, our results suggest a reciprocal regulatory relationship, indicating that GluN2B may also influence FMRP expression. This study provides insights into the molecular mechanisms underlying neuropathic pain, suggesting the potential for therapeutic intervention targeting the FMRP-GluN2B axis in pain management.

{"title":"Upregulation of FMRP Is Involved in Neuropathic Pain by Regulating GluN2B Activation in Rat Spinal Cord","authors":"Lei Chen,&nbsp;Xuejiao Guo,&nbsp;Long Zhang,&nbsp;Yunze Li,&nbsp;Li Zhou,&nbsp;Jinsong Zhao,&nbsp;Yujia Luo,&nbsp;Yanling Hu,&nbsp;Xiaowei Chen,&nbsp;Xianhui Kang,&nbsp;Xiangming Fang,&nbsp;Zhiying Feng","doi":"10.1111/jnc.70022","DOIUrl":"https://doi.org/10.1111/jnc.70022","url":null,"abstract":"<div>\u0000 \u0000 <p>Fragile X mental retardation protein (FMRP) has been proposed to play a potential role in the pathogenesis of autonomy and nociceptive paresthesia. However, the involvement of spinal FMRP in neuropathic pain remains unexplored. Using a rat model of neuropathic pain induced by chronic constriction injury (CCI), our investigation demonstrated an upregulation of FMRP at 3, 7, and 14 days post-CCI operation in the spinal dorsal horn (SDH). Immunofluorescence staining revealed predominant FMRP expression in spinal neurons, which colocalized with Glutamate Ionotropic Receptor NMDA Type Subunit 2B (GluN2B). The Co-immunoprecipitation results suggested an interaction between spinal FMRP and GluN2B. Genetic knockout of the Fmr1 gene or transient interference with the FMRP protein alleviated CCI-induced pain hypersensitivity and suppressed the increase in spinal GluN2B expression. Conversely, intrathecal administration of the GluN2B-specific inhibitor Ifenprodil significantly suppressed the CCI-induced increase in spinal FMRP expression. In conclusion, our findings highlight the pivotal role of spinal FMRP in developing neuropathic pain and modulating GluN2B levels within the SDH. Furthermore, our results suggest a reciprocal regulatory relationship, indicating that GluN2B may also influence FMRP expression. This study provides insights into the molecular mechanisms underlying neuropathic pain, suggesting the potential for therapeutic intervention targeting the FMRP-GluN2B axis in pain management.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>\u0000 </div>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143475760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Deubiquitinase USP2 Modulates Photic Entrainment of the Circadian Clock at the Level of the Suprachiasmatic Nucleus
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.1111/jnc.70018
Shashank B. Srikanta, Thomas W. Brown, Antoine Malescot, Marie-Ève Cloutier, Lei Zhu, Christine Coutanson, Maryam Malki, Kai-Florian Storch, Ravi Rungta, Michel Cayouette, Ouria Dkhissi-Benyahya, Nicolas Cermakian

Ubiquitin-specific peptidase 2 (USP2) is a deubiquitinase (DUB) with a diversity of functions in physiology. One of these functions is the regulation of circadian rhythms, which are physiological rhythms with a period of ~24 h. Previous studies have indicated a role for USP2 in photic entrainment, the process by which circadian clocks synchronize to environmental light cues. Here, we investigated the implication of USP2 in this process, using Usp2 knockout (KO) mice. Using different light treatments and running wheel recordings, we established that USP2 controls entrainment of the clock to light cues at dusk. Further, we showed that Usp2 is expressed throughout the suprachiasmatic nucleus (SCN), the site of the central clock, and in the retina. This raised the question of where USP2 acts on circadian photoreception. We found that it is not within the retina, as retinas of Usp2 KO mice have an intact structure and unaltered photoreception through intrinsically photosensitive retinal ganglion cells. Moreover, KO of Usp2 within the retina does not alter clock entrainment to light. In contract, KO of Usp2 in the SCN causes a light entrainment phenotype similar to full-body KO mice, showing that the action of USP2 in modulating photic entrainment predominantly takes place in the SCN. Finally, within the SCN, we found that induction of clock gene Per1 and activation of MAPK/ERK pathway in response to light were blunted in Usp2 KO mice. Altogether, we established a key role for USP2 in regulating photic entrainment by modulating light-responsive pathways within the SCN.

{"title":"The Deubiquitinase USP2 Modulates Photic Entrainment of the Circadian Clock at the Level of the Suprachiasmatic Nucleus","authors":"Shashank B. Srikanta,&nbsp;Thomas W. Brown,&nbsp;Antoine Malescot,&nbsp;Marie-Ève Cloutier,&nbsp;Lei Zhu,&nbsp;Christine Coutanson,&nbsp;Maryam Malki,&nbsp;Kai-Florian Storch,&nbsp;Ravi Rungta,&nbsp;Michel Cayouette,&nbsp;Ouria Dkhissi-Benyahya,&nbsp;Nicolas Cermakian","doi":"10.1111/jnc.70018","DOIUrl":"https://doi.org/10.1111/jnc.70018","url":null,"abstract":"<p>Ubiquitin-specific peptidase 2 (USP2) is a deubiquitinase (DUB) with a diversity of functions in physiology. One of these functions is the regulation of circadian rhythms, which are physiological rhythms with a period of ~24 h. Previous studies have indicated a role for USP2 in photic entrainment, the process by which circadian clocks synchronize to environmental light cues. Here, we investigated the implication of USP2 in this process, using <i>Usp2</i> knockout (KO) mice. Using different light treatments and running wheel recordings, we established that USP2 controls entrainment of the clock to light cues at dusk. Further, we showed that <i>Usp2</i> is expressed throughout the suprachiasmatic nucleus (SCN), the site of the central clock, and in the retina. This raised the question of where USP2 acts on circadian photoreception. We found that it is not within the retina, as retinas of <i>Usp2</i> KO mice have an intact structure and unaltered photoreception through intrinsically photosensitive retinal ganglion cells. Moreover, KO of <i>Usp2</i> within the retina does not alter clock entrainment to light. In contract, KO of <i>Usp2</i> in the SCN causes a light entrainment phenotype similar to full-body KO mice, showing that the action of USP2 in modulating photic entrainment predominantly takes place in the SCN. Finally, within the SCN, we found that induction of clock gene <i>Per1</i> and activation of MAPK/ERK pathway in response to light were blunted in <i>Usp2</i> KO mice. Altogether, we established a key role for USP2 in regulating photic entrainment by modulating light-responsive pathways within the SCN.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.70018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Pharmacophore for Drugs Targeting the α4α4 Binding Site of the (α4)3(β2)2 Nicotinic Acetylcholine Receptor
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-18 DOI: 10.1111/jnc.70000
Ali S. Kusay, Yujia Luo, Megan L. O'Mara, Thomas Balle

Neuronal nicotinic acetylcholine receptors (nAChRs) have an established role in pain pathways and devastating neurodegenerative diseases; however, few drugs have been successfully developed to target them. The most abundant nAChR in the brain, the α4β2 nAChR, is assembled from five subunits in a 3α:2β stoichiometry—(α4)3(β2)2. This receptor contains a unique agonist-binding site at the α4α4 interface in addition to two classical agonist-binding sites at α4β2 interfaces. Most known agonists target both α4α4 and α4β2 sites, however, a few compounds with selectivity for the α4α4 site have been identified. These α4α4 selective compounds have a modulator-like effect akin to benzodiazepines in the γ-aminobutyric acid type A receptor, which is desirable from a drug development perspective. The two most well characterised α4α4 selective compounds are CMPI and NS9283. Both are structurally very different from classical agonists, and it is puzzling how they occupy the same binding site. In the search for a common pharmacophore, we conducted extensive molecular dynamics simulations with both classical agonists and site-selective non-classical compounds. Analyses of the simulations revealed that the α4α4 binding site contains a unique pocket not found in the α4β2 binding site. CMPI and NS9283 were observed to bind in this pocket, thereby explaining why they are selective for the α4α4 binding site. The proposed binding mode featured a closed-loop C conformation, which is strongly correlated with agonism in nAChRs and explained key site-directed mutagenesis data for both compounds. Based on this binding mode, we proposed a pharmacophore for drugs targeting the α4α4 binding site. The proposed pharmacophore captures the essence of the original model, that is, nicotinic agonists act as a bridge between protein subunits. The pharmacophore model we propose is unique to the α4α4 binding site and provides a template for developing new site-selective therapeutic agents.

{"title":"A Pharmacophore for Drugs Targeting the α4α4 Binding Site of the (α4)3(β2)2 Nicotinic Acetylcholine Receptor","authors":"Ali S. Kusay,&nbsp;Yujia Luo,&nbsp;Megan L. O'Mara,&nbsp;Thomas Balle","doi":"10.1111/jnc.70000","DOIUrl":"https://doi.org/10.1111/jnc.70000","url":null,"abstract":"<p>Neuronal nicotinic acetylcholine receptors (nAChRs) have an established role in pain pathways and devastating neurodegenerative diseases; however, few drugs have been successfully developed to target them. The most abundant nAChR in the brain, the α4β2 nAChR, is assembled from five subunits in a 3α:2β stoichiometry—(α4)<sub>3</sub>(β2)<sub>2</sub>. This receptor contains a unique agonist-binding site at the α4α4 interface in addition to two classical agonist-binding sites at α4β2 interfaces. Most known agonists target both α4α4 and α4β2 sites, however, a few compounds with selectivity for the α4α4 site have been identified. These α4α4 selective compounds have a modulator-like effect akin to benzodiazepines in the γ-aminobutyric acid type A receptor, which is desirable from a drug development perspective. The two most well characterised α4α4 selective compounds are CMPI and NS9283. Both are structurally very different from classical agonists, and it is puzzling how they occupy the same binding site. In the search for a common pharmacophore, we conducted extensive molecular dynamics simulations with both classical agonists and site-selective non-classical compounds. Analyses of the simulations revealed that the α4α4 binding site contains a unique pocket not found in the α4β2 binding site. CMPI and NS9283 were observed to bind in this pocket, thereby explaining why they are selective for the α4α4 binding site. The proposed binding mode featured a closed-loop C conformation, which is strongly correlated with agonism in nAChRs and explained key site-directed mutagenesis data for both compounds. Based on this binding mode, we proposed a pharmacophore for drugs targeting the α4α4 binding site. The proposed pharmacophore captures the essence of the original model, that is, nicotinic agonists act as a bridge between protein subunits. The pharmacophore model we propose is unique to the α4α4 binding site and provides a template for developing new site-selective therapeutic agents.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jnc.70000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143438774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Vivo Assessment of Cortical Astrocyte Network Dysfunction During Autoimmune Demyelination: Correlation With Disease Severity
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-16 DOI: 10.1111/jnc.16305
A. Moreno-García, R. Serrat, F. Julio-Kalajzic, A. Bernal-Chico, A. M. Baraibar, C. Matute, G. Marsicano, S. Mato

Cortical damage and dysfunction is a pathological hallmark of multiple sclerosis (MS) that correlates with the severity of physical and cognitive disability. Astrocytes participate in MS pathobiology through a variety of mechanisms, and abnormal astrocytic calcium signaling has been pointed as a pathogenic mechanism of cortical dysfunction in MS. However, in vivo evidence supporting deregulation of astrocyte calcium-dependent mechanisms in cortical MS is still limited. Here, we applied fiber photometry to the longitudinal analysis of spontaneous and sensory-evoked astrocyte network activity in the somatosensory cortex of mice in an experimental autoimmune encephalomyelitis (EAE). We found that freely moving EAE mice exhibit spontaneously occurring astrocyte calcium signals of increased duration and reduced amplitude. Concomitantly, cortical astrocytes in EAE mice responded to sensory stimulation with calcium events of decreased amplitude. The emergence of aberrant astrocyte calcium signals in the somatosensory cortex paralleled the onset of neurological symptomatology, and changes in the amplitude of both spontaneous and evoked responses were selectively correlated to the severity of neurological deficits. These results highlight the imbalance of astrocyte network activity in the brain cortex during autoimmune inflammation and further support the relevance of astrocyte-based pathobiology as an underlying mechanism of cortical dysfunction in MS.

{"title":"In Vivo Assessment of Cortical Astrocyte Network Dysfunction During Autoimmune Demyelination: Correlation With Disease Severity","authors":"A. Moreno-García,&nbsp;R. Serrat,&nbsp;F. Julio-Kalajzic,&nbsp;A. Bernal-Chico,&nbsp;A. M. Baraibar,&nbsp;C. Matute,&nbsp;G. Marsicano,&nbsp;S. Mato","doi":"10.1111/jnc.16305","DOIUrl":"https://doi.org/10.1111/jnc.16305","url":null,"abstract":"<div>\u0000 \u0000 <p>Cortical damage and dysfunction is a pathological hallmark of multiple sclerosis (MS) that correlates with the severity of physical and cognitive disability. Astrocytes participate in MS pathobiology through a variety of mechanisms, and abnormal astrocytic calcium signaling has been pointed as a pathogenic mechanism of cortical dysfunction in MS. However, in vivo evidence supporting deregulation of astrocyte calcium-dependent mechanisms in cortical MS is still limited. Here, we applied fiber photometry to the longitudinal analysis of spontaneous and sensory-evoked astrocyte network activity in the somatosensory cortex of mice in an experimental autoimmune encephalomyelitis (EAE). We found that freely moving EAE mice exhibit spontaneously occurring astrocyte calcium signals of increased duration and reduced amplitude. Concomitantly, cortical astrocytes in EAE mice responded to sensory stimulation with calcium events of decreased amplitude. The emergence of aberrant astrocyte calcium signals in the somatosensory cortex paralleled the onset of neurological symptomatology, and changes in the amplitude of both spontaneous and evoked responses were selectively correlated to the severity of neurological deficits. These results highlight the imbalance of astrocyte network activity in the brain cortex during autoimmune inflammation and further support the relevance of astrocyte-based pathobiology as an underlying mechanism of cortical dysfunction in MS.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>\u0000 </div>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Supramolecular Architecture of Mitochondrial Complex I in the Rat Brain Is Altered by Alzheimer's-Like Cerebral Amyloidosis
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-13 DOI: 10.1111/jnc.70017
Gisela V. Novack, Pablo Galeano, Lucas A. Defelipe, Lorenzo Campanelli, Karen S. Campuzano, Cecilia Rotondaro, Eduardo M. Castaño, Sonia Do Carmo, A. Claudio Cuello, María M. García-Alai, Laura Morelli

Mitochondrial respiratory complexes are organized into supercomplexes (SC) to regulate electron flow and mitigate oxidative stress. Alterations in SC organization in the brain may affect energy expenditure, oxidative stress, and neuronal survival. In this report, we investigated the amount, activity and organization of mitochondrial complex I (CI) in the hippocampus of 12-month-old McGill-R-Thy1-APP transgenic (Tg) rats, an animal model of Alzheimer's-like cerebral amyloidosis. By means of BN-PAGE, we found that the organization of SC did not differ between genotypes, but a lower abundance of SC was detected in Tg compared to wild-type (WT) rats. Using a more sensitive technique (2-D electrophoresis followed by Western blot), higher levels of free CI and a decrease in the relative abundance of assembled CI in SC (I-III2 and I-III2-IV) were observed in Tg rats. In-gel activity assays showed that the total activity of CI (CI + SC-CI) is lower in Tg compared to WT, while Tg samples show a significant decrease in SC-CI-associated activity. This alteration in CI assembly was associated with nitro-oxidative stress and changes in mitochondrial fusion-fission parameters. To assess CI composition, we applied LC–MS/MS to the isolated CI from BN-PAGE and found that 11 of 45 subunits described in mammals were found to be less abundant in Tg. We examined the levels of the nuclear-derived NDUFA9 subunit, which is critical for CI assembly, and found higher levels in the cytoplasmic fraction and lower levels in the mitochondrial fraction in Tg, suggesting that brain amyloidosis affects the import of CI subunits from the cytosol to the mitochondria, destabilizing the SC. This is the first report to characterize the types, abundance and activity of SC in the hippocampus of an animal model of cerebral amyloidosis, providing additional experimental evidence for the molecular mechanisms underlying the brain bioenergetic deficit characteristic of Alzheimer's disease.

{"title":"The Supramolecular Architecture of Mitochondrial Complex I in the Rat Brain Is Altered by Alzheimer's-Like Cerebral Amyloidosis","authors":"Gisela V. Novack,&nbsp;Pablo Galeano,&nbsp;Lucas A. Defelipe,&nbsp;Lorenzo Campanelli,&nbsp;Karen S. Campuzano,&nbsp;Cecilia Rotondaro,&nbsp;Eduardo M. Castaño,&nbsp;Sonia Do Carmo,&nbsp;A. Claudio Cuello,&nbsp;María M. García-Alai,&nbsp;Laura Morelli","doi":"10.1111/jnc.70017","DOIUrl":"https://doi.org/10.1111/jnc.70017","url":null,"abstract":"<div>\u0000 \u0000 <p>Mitochondrial respiratory complexes are organized into supercomplexes (SC) to regulate electron flow and mitigate oxidative stress. Alterations in SC organization in the brain may affect energy expenditure, oxidative stress, and neuronal survival. In this report, we investigated the amount, activity and organization of mitochondrial complex I (CI) in the hippocampus of 12-month-old McGill-R-Thy1-APP transgenic (Tg) rats, an animal model of Alzheimer's-like cerebral amyloidosis. By means of BN-PAGE, we found that the organization of SC did not differ between genotypes, but a lower abundance of SC was detected in Tg compared to wild-type (WT) rats. Using a more sensitive technique (2-D electrophoresis followed by Western blot), higher levels of free CI and a decrease in the relative abundance of assembled CI in SC (I-III<sub>2</sub> and I-III<sub>2</sub>-IV) were observed in Tg rats. In-gel activity assays showed that the total activity of CI (CI + SC-CI) is lower in Tg compared to WT, while Tg samples show a significant decrease in SC-CI-associated activity. This alteration in CI assembly was associated with nitro-oxidative stress and changes in mitochondrial fusion-fission parameters. To assess CI composition, we applied LC–MS/MS to the isolated CI from BN-PAGE and found that 11 of 45 subunits described in mammals were found to be less abundant in Tg. We examined the levels of the nuclear-derived NDUFA9 subunit, which is critical for CI assembly, and found higher levels in the cytoplasmic fraction and lower levels in the mitochondrial fraction in Tg, suggesting that brain amyloidosis affects the import of CI subunits from the cytosol to the mitochondria, destabilizing the SC. This is the first report to characterize the types, abundance and activity of SC in the hippocampus of an animal model of cerebral amyloidosis, providing additional experimental evidence for the molecular mechanisms underlying the brain bioenergetic deficit characteristic of Alzheimer's disease.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>\u0000 </div>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143404661","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ganaxolone Reverses the Effect of Amyloid β-Induced Neurotoxicity by Regulating the Liver X Receptor Expression in APP Transfected SH-SY5Y Cells and Murine Model of Alzheimer's Disease
IF 4.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2025-02-12 DOI: 10.1111/jnc.70007
Divya, Mohammed Faruq, Sheikh Sana Nazir, Pooja Kaushik, Suhel Parvez, Divya Vohora

Inhibiting β-amyloid aggregation and enhancing its clearance are the key strategies in Alzheimer's disease (AD) treatment. Liver X receptors (LXRs) plays a crucial role in cholesterol homeostasis and inflammation, and their activation can clear Aβ aggregates in AD. Allopregnanolone, a neurosteroid, positively influences AD through LXR regulation, while ganaxolone, its synthetic analog, is known for its neuroprotective properties. This study explores the effect of ganaxolone on LXR activation and regulation of genes involved in mitigating Aβ toxicity and tauopathy in SH-SY5Y cells transfected with APP695 Swe/Ind plasmid and an Aβ1–42 induced AD mouse model. Molecular docking stimulations indicated ganaxolone's binding and interaction with LXRβ. Subsequently, transfected neuronal cells exhibited increased mRNA levels of APP, TNF-α and IL-1β, decreased cell viability, reduced MMP and altered protein expression of Aβ, LXR, BCL-2, APOE, ABCA1, along with increased levels of mROS, Bax, and caspase 3 activity. Ganaxolone treatment significantly abrogated Aβ-induced effect in transfected neuronal cells by enhancing LXRβ expression, inducing LXR:RXR colocalization, thereby increasing APOE and ABCA1 expression. It also decreased tau mRNA levels in transfected cells. Importantly, in AD mice, ganaxolone ameliorated cognitive impairment, reduced Aβ toxicity, tau levels, and neuroinflammatory markers, restored mitochondrial function, and decreased neuronal apoptosis. Taken together, these novel results highlight the central role of LXR in mediating Aβ-induced toxicity and provide preclinical evidence for ganaxolone as a potential agent to reduce toxicity in an LXR-dependent manner. This may serve as a promising treatment strategy to slow or prevent neurodegeneration in AD patients.

{"title":"Ganaxolone Reverses the Effect of Amyloid β-Induced Neurotoxicity by Regulating the Liver X Receptor Expression in APP Transfected SH-SY5Y Cells and Murine Model of Alzheimer's Disease","authors":"Divya,&nbsp;Mohammed Faruq,&nbsp;Sheikh Sana Nazir,&nbsp;Pooja Kaushik,&nbsp;Suhel Parvez,&nbsp;Divya Vohora","doi":"10.1111/jnc.70007","DOIUrl":"https://doi.org/10.1111/jnc.70007","url":null,"abstract":"<div>\u0000 \u0000 <p>Inhibiting β-amyloid aggregation and enhancing its clearance are the key strategies in Alzheimer's disease (AD) treatment. Liver X receptors (LXRs) plays a crucial role in cholesterol homeostasis and inflammation, and their activation can clear Aβ aggregates in AD. Allopregnanolone, a neurosteroid, positively influences AD through LXR regulation, while ganaxolone, its synthetic analog, is known for its neuroprotective properties. This study explores the effect of ganaxolone on LXR activation and regulation of genes involved in mitigating Aβ toxicity and tauopathy in SH-SY5Y cells transfected with APP695 Swe/Ind plasmid and an Aβ1–42 induced AD mouse model. Molecular docking stimulations indicated ganaxolone's binding and interaction with LXRβ. Subsequently, transfected neuronal cells exhibited increased mRNA levels of APP, TNF-α and IL-1β, decreased cell viability, reduced MMP and altered protein expression of Aβ, LXR, BCL-2, APOE, ABCA1, along with increased levels of mROS, Bax, and caspase 3 activity. Ganaxolone treatment significantly abrogated Aβ-induced effect in transfected neuronal cells by enhancing LXRβ expression, inducing LXR:RXR colocalization, thereby increasing APOE and ABCA1 expression. It also decreased tau mRNA levels in transfected cells. Importantly, in AD mice, ganaxolone ameliorated cognitive impairment, reduced Aβ toxicity, tau levels, and neuroinflammatory markers, restored mitochondrial function, and decreased neuronal apoptosis. Taken together, these novel results highlight the central role of LXR in mediating Aβ-induced toxicity and provide preclinical evidence for ganaxolone as a potential agent to reduce toxicity in an LXR-dependent manner. This may serve as a promising treatment strategy to slow or prevent neurodegeneration in AD patients.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>\u0000 </div>","PeriodicalId":16527,"journal":{"name":"Journal of Neurochemistry","volume":"169 2","pages":""},"PeriodicalIF":4.2,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143389047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Neurochemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1