{"title":"A patient-derived xenograft mouse platform from epithelioid glioblastoma provides possible druggable screening and translational study.","authors":"Chiao-Yun Lin, Chen-Yang Huang, Cheng-Chi Lee, Lien-Min Li, Ya-Fang Lee, Shi-Ming Jung, Hsien-Chi Fan, An-Chi Lin, Cheng-Lung Hsu, Yin-Cheng Huang","doi":"10.62347/LQIJ5334","DOIUrl":null,"url":null,"abstract":"<p><p>Despite advancements in targeted therapy, glioblastoma remains a challenging condition with limited treatment options. While surgical techniques and external radiation therapy have improved, the median survival for glioblastoma stands at around 12-18 months, with a 5-year survival rate of only 6.8%. Epithelioid glioblastoma (eGBM) represents a rare subtype within the glioma spectrum. Utilizing patient-derived xenograft (PDX) models in mice offers a promising avenue for drug screening and translational research, particularly for this specific glioblastoma subtype. Establishing a stable PDX model for eGBM revealed consistent genetic abnormalities, including <i>BRAF V600E</i> mutation and <i>CDKN2A</i> deletion, in both primary and PDX tumors. Leveraging a curated drug database, compounds potentially targeting these aberrations were identified. By using the novel PDX platform, the results presented in this study demonstrate that the treatments with Palbociclib or Dabrafenib/Trametinib significantly reduced tumor size. RNA sequencing analysis further validated the responsiveness of the tumors to these targeted therapies. In conclusion, PDX models offer a deeper understanding of eGBM at the genomic level and facilitate the identification of potential therapeutic targets. Further translational studies of this novel PDX model hold promise for advancing the diagnosis and treatment of this specific subtype of glioblastoma.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"14 10","pages":"4747-4759"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11560820/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/LQIJ5334","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite advancements in targeted therapy, glioblastoma remains a challenging condition with limited treatment options. While surgical techniques and external radiation therapy have improved, the median survival for glioblastoma stands at around 12-18 months, with a 5-year survival rate of only 6.8%. Epithelioid glioblastoma (eGBM) represents a rare subtype within the glioma spectrum. Utilizing patient-derived xenograft (PDX) models in mice offers a promising avenue for drug screening and translational research, particularly for this specific glioblastoma subtype. Establishing a stable PDX model for eGBM revealed consistent genetic abnormalities, including BRAF V600E mutation and CDKN2A deletion, in both primary and PDX tumors. Leveraging a curated drug database, compounds potentially targeting these aberrations were identified. By using the novel PDX platform, the results presented in this study demonstrate that the treatments with Palbociclib or Dabrafenib/Trametinib significantly reduced tumor size. RNA sequencing analysis further validated the responsiveness of the tumors to these targeted therapies. In conclusion, PDX models offer a deeper understanding of eGBM at the genomic level and facilitate the identification of potential therapeutic targets. Further translational studies of this novel PDX model hold promise for advancing the diagnosis and treatment of this specific subtype of glioblastoma.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.