Haobo Zhang, Yanrong Yang, Zitao Zhang, Chun Yin, Shengqian Wang, Kai Wei, Hao Chen, Junlei Zhao
{"title":"Measurement of ocular aberration in noise based on deep learning with a Shack-Hartmann wavefront sensor.","authors":"Haobo Zhang, Yanrong Yang, Zitao Zhang, Chun Yin, Shengqian Wang, Kai Wei, Hao Chen, Junlei Zhao","doi":"10.1364/BOE.541483","DOIUrl":null,"url":null,"abstract":"<p><p>Shack-Hartmann-based wavefront sensing combined with deep learning, due to its fast, accurate, and large dynamic range, has been widely studied in many fields including ocular aberration measurement. Problems such as noise and corneal reflection affect the accuracy of detection in practical measuring ocular aberration systems. This paper establishes a framework comprising of a noise-added model, Hartmannograms with corneal reflections and the corneal reflection elimination algorithm. Therefore, a more realistic data set is obtained, enabling the convolutional neural network to learn more comprehensive features and carry out real machine verification. The results show that the proposed method has excellent measurement accuracy. The root mean square error (RMSE) of the residual wavefront is 0.00924 ± 0.0207<i>λ</i> (mean ± standard deviation) in simulation and 0.0496 ± 0.0156<i>λ</i> in a real machine. Compared with other methods, this network combined with the proposed corneal reflection elimination algorithm is more accurate, speedier, and more widely applicable in the noise and corneal reflection situations, making it a promising tool for ocular aberration measurement.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 11","pages":"6531-6548"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563320/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.541483","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Shack-Hartmann-based wavefront sensing combined with deep learning, due to its fast, accurate, and large dynamic range, has been widely studied in many fields including ocular aberration measurement. Problems such as noise and corneal reflection affect the accuracy of detection in practical measuring ocular aberration systems. This paper establishes a framework comprising of a noise-added model, Hartmannograms with corneal reflections and the corneal reflection elimination algorithm. Therefore, a more realistic data set is obtained, enabling the convolutional neural network to learn more comprehensive features and carry out real machine verification. The results show that the proposed method has excellent measurement accuracy. The root mean square error (RMSE) of the residual wavefront is 0.00924 ± 0.0207λ (mean ± standard deviation) in simulation and 0.0496 ± 0.0156λ in a real machine. Compared with other methods, this network combined with the proposed corneal reflection elimination algorithm is more accurate, speedier, and more widely applicable in the noise and corneal reflection situations, making it a promising tool for ocular aberration measurement.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.