Flame retardants of the future: biobased, organophosphorus, reactive or oligomeric.

IF 3.8 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Frontiers in Chemistry Pub Date : 2024-11-01 eCollection Date: 2024-01-01 DOI:10.3389/fchem.2024.1500782
Bob A Howell
{"title":"Flame retardants of the future: biobased, organophosphorus, reactive or oligomeric.","authors":"Bob A Howell","doi":"10.3389/fchem.2024.1500782","DOIUrl":null,"url":null,"abstract":"<p><p>Polymeric materials have been a great boon to the development and wellbeing of mankind. However, in the main, these materials are flammable and must be flame retarded for most applications. Many substances have been utilized to impart a measure of flame retardancy. The most widely used and most effective have been organic: organohalogen and organophosphorus compounds. Organohalogen compounds have been popular, low-cost, very effective flame retardants for polymeric materials. However, with the recognition that these compounds readily migrate from a polymer matrix into which they have been incorporated, persist in the environment and pose serious risks to human health, the use of organophosphorus compounds has become prominent. In particular, organophosphorus compounds of appropriate structure derived from readily-available, renewable, low-cost, non-toxic biobased precursors are attractive. Avoidance of the issues of environmental persistence and toxicity associated with organohalogen compounds is possible with these materials. Migration from a polymer matrix may be removed as a deficiency through the use of reactive compounds, i.e., compounds that may be incorporated directly into the polymer structure either by copolymerization or grafting, or oligomeric compounds. Oligomeric materials of branched structure display characteristics of broad compatibility, high effectiveness and lack of migration.</p>","PeriodicalId":12421,"journal":{"name":"Frontiers in Chemistry","volume":"12 ","pages":"1500782"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11564728/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3389/fchem.2024.1500782","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymeric materials have been a great boon to the development and wellbeing of mankind. However, in the main, these materials are flammable and must be flame retarded for most applications. Many substances have been utilized to impart a measure of flame retardancy. The most widely used and most effective have been organic: organohalogen and organophosphorus compounds. Organohalogen compounds have been popular, low-cost, very effective flame retardants for polymeric materials. However, with the recognition that these compounds readily migrate from a polymer matrix into which they have been incorporated, persist in the environment and pose serious risks to human health, the use of organophosphorus compounds has become prominent. In particular, organophosphorus compounds of appropriate structure derived from readily-available, renewable, low-cost, non-toxic biobased precursors are attractive. Avoidance of the issues of environmental persistence and toxicity associated with organohalogen compounds is possible with these materials. Migration from a polymer matrix may be removed as a deficiency through the use of reactive compounds, i.e., compounds that may be incorporated directly into the polymer structure either by copolymerization or grafting, or oligomeric compounds. Oligomeric materials of branched structure display characteristics of broad compatibility, high effectiveness and lack of migration.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
未来的阻燃剂:生物基、有机磷、活性或低聚物。
聚合材料为人类的发展和福祉做出了巨大贡献。然而,这些材料基本上都是易燃的,在大多数应用中都必须进行阻燃处理。许多物质都被用来赋予一定程度的阻燃性。使用最广泛和最有效的是有机物:有机卤素和有机磷化合物。有机卤素化合物一直是聚合物材料中常用的、低成本且非常有效的阻燃剂。然而,随着人们认识到这些化合物很容易从加入其中的聚合物基体中迁移,在环境中持久存在,并对人类健康造成严重危害,有机磷化合物的使用已变得十分突出。特别是,从现成、可再生、低成本、无毒的生物基前体中提取的适当结构的有机磷化合物很有吸引力。这些材料可以避免与有机卤化合物相关的环境持久性和毒性问题。通过使用反应性化合物,即通过共聚或接枝直接加入聚合物结构中的化合物或低聚物,可以消除聚合物基体迁移的缺陷。支化结构的低聚物材料具有相容性广、功效高和不迁移的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Chemistry
Frontiers in Chemistry Chemistry-General Chemistry
CiteScore
8.50
自引率
3.60%
发文量
1540
审稿时长
12 weeks
期刊介绍: Frontiers in Chemistry is a high visiblity and quality journal, publishing rigorously peer-reviewed research across the chemical sciences. Field Chief Editor Steve Suib at the University of Connecticut is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to academics, industry leaders and the public worldwide. Chemistry is a branch of science that is linked to all other main fields of research. The omnipresence of Chemistry is apparent in our everyday lives from the electronic devices that we all use to communicate, to foods we eat, to our health and well-being, to the different forms of energy that we use. While there are many subtopics and specialties of Chemistry, the fundamental link in all these areas is how atoms, ions, and molecules come together and come apart in what some have come to call the “dance of life”. All specialty sections of Frontiers in Chemistry are open-access with the goal of publishing outstanding research publications, review articles, commentaries, and ideas about various aspects of Chemistry. The past forms of publication often have specific subdisciplines, most commonly of analytical, inorganic, organic and physical chemistries, but these days those lines and boxes are quite blurry and the silos of those disciplines appear to be eroding. Chemistry is important to both fundamental and applied areas of research and manufacturing, and indeed the outlines of academic versus industrial research are also often artificial. Collaborative research across all specialty areas of Chemistry is highly encouraged and supported as we move forward. These are exciting times and the field of Chemistry is an important and significant contributor to our collective knowledge.
期刊最新文献
Emerging NO2 gas sensing on substitutionally doped Fe on NiWO4 SCES insulators. Supramolecular systems and their connection with metal-organic structures. Carborane-based BODIPY dyes: synthesis, structural analysis, photophysics and applications. Flame retardants of the future: biobased, organophosphorus, reactive or oligomeric. Laser-induced graphene gas sensors for environmental monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1