Wajeeha Yaseen, Muhammad Iqbal, Muhammad Arslan Ashraf, Muhammad Asif Saleem, Fahad Shafiq, Sehar Shaheen, Samira Khaliq, Razia Gulnaz
{"title":"Menadiol diacetate mediated subcellular Cd accumulation and nutrients uptake alleviates Cd toxicity and increases growth and yield of summer squash.","authors":"Wajeeha Yaseen, Muhammad Iqbal, Muhammad Arslan Ashraf, Muhammad Asif Saleem, Fahad Shafiq, Sehar Shaheen, Samira Khaliq, Razia Gulnaz","doi":"10.1080/15226514.2024.2427928","DOIUrl":null,"url":null,"abstract":"<p><p>Cadmium (Cd) has shown toxicity to reduce growth and productivity in different plants. The Present study investigated the efficacy of menadiol diacetate (MD) to reduce Cd stress on growth and yield of summer squash plants. The experiment was performed under saturated Hoagland's nutrient solution (control) while the other group was supplemented with 0.1 mM CdCl<sub>2</sub> (Cd stress). Surface sterilized seeds of summer squash were primed in different concentrations (10, 20 µM) of MD as well as in distilled water for 24 h and sown in the pots. Different morphological and physio-biochemical attributes were determined after 35 d of growth whereas the data for yield attributes was collected after 70 d. Cd concentration was determined in various subcellular compartments <i>i.e.,</i> cell walls and cell wall debris, chloroplast, cell membrane and other organelles including vacuoles. The Cd stress decreased photosynthetic pigments, osmoprotectants and ultimately caused reduction in the yield attributes. Further, it increased the secondary metabolites and oxidants (MDA and H<sub>2</sub>O<sub>2</sub>) in the summer squash tissues. Cd exposure also altered ions accumulation in the summer squash tissues by increasing the root and shoot Ca<sup>2+</sup> (24-93%) and Fe (4-18%) ions while decreasing the Mg<sup>2+</sup> (31-39%) ions. The MD-priming, particularly at 10 µM concentration mediated increase in the total phenolics, ascorbic acid, and anthocyanins concentration, and thus enhanced growth and yield attributes of summer squash exposed to Cd toxicity. Further, 10 µM MD-priming facilitated Cd compartmentalization in the subcellular compartments mainly in the cell wall (58%) rather than in the chloroplast (18%), cell membrane (7%) and soluble fractions (18%). In this context, cell wall and vacuole were the key compartments for Cd sequestration. This study highlights MD-priming as a potential strategy to counter Cd toxicity in summer squash plants.</p>","PeriodicalId":14235,"journal":{"name":"International Journal of Phytoremediation","volume":" ","pages":"1-13"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Phytoremediation","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15226514.2024.2427928","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Cadmium (Cd) has shown toxicity to reduce growth and productivity in different plants. The Present study investigated the efficacy of menadiol diacetate (MD) to reduce Cd stress on growth and yield of summer squash plants. The experiment was performed under saturated Hoagland's nutrient solution (control) while the other group was supplemented with 0.1 mM CdCl2 (Cd stress). Surface sterilized seeds of summer squash were primed in different concentrations (10, 20 µM) of MD as well as in distilled water for 24 h and sown in the pots. Different morphological and physio-biochemical attributes were determined after 35 d of growth whereas the data for yield attributes was collected after 70 d. Cd concentration was determined in various subcellular compartments i.e., cell walls and cell wall debris, chloroplast, cell membrane and other organelles including vacuoles. The Cd stress decreased photosynthetic pigments, osmoprotectants and ultimately caused reduction in the yield attributes. Further, it increased the secondary metabolites and oxidants (MDA and H2O2) in the summer squash tissues. Cd exposure also altered ions accumulation in the summer squash tissues by increasing the root and shoot Ca2+ (24-93%) and Fe (4-18%) ions while decreasing the Mg2+ (31-39%) ions. The MD-priming, particularly at 10 µM concentration mediated increase in the total phenolics, ascorbic acid, and anthocyanins concentration, and thus enhanced growth and yield attributes of summer squash exposed to Cd toxicity. Further, 10 µM MD-priming facilitated Cd compartmentalization in the subcellular compartments mainly in the cell wall (58%) rather than in the chloroplast (18%), cell membrane (7%) and soluble fractions (18%). In this context, cell wall and vacuole were the key compartments for Cd sequestration. This study highlights MD-priming as a potential strategy to counter Cd toxicity in summer squash plants.
期刊介绍:
The International Journal of Phytoremediation (IJP) is the first journal devoted to the publication of laboratory and field research describing the use of plant systems to solve environmental problems by enabling the remediation of soil, water, and air quality and by restoring ecosystem services in managed landscapes. Traditional phytoremediation has largely focused on soil and groundwater clean-up of hazardous contaminants. Phytotechnology expands this umbrella to include many of the natural resource management challenges we face in cities, on farms, and other landscapes more integrated with daily public activities. Wetlands that treat wastewater, rain gardens that treat stormwater, poplar tree plantings that contain pollutants, urban tree canopies that treat air pollution, and specialized plants that treat decommissioned mine sites are just a few examples of phytotechnologies.