{"title":"Interpretation of the Standardized Mean Difference Effect Size When Distributions Are Not Normal or Homoscedastic.","authors":"Larry V Hedges","doi":"10.1177/00131644241278928","DOIUrl":null,"url":null,"abstract":"<p><p>The standardized mean difference (sometimes called Cohen's d) is an effect size measure widely used to describe the outcomes of experiments. It is mathematically natural to describe differences between groups of data that are normally distributed with different means but the same standard deviation. In that context, it can be interpreted as determining several indexes of overlap between the two distributions. If the data are not approximately normally distributed or if they have substantially unequal standard deviations, the relation between d and overlap between distributions can be very different, and interpretations of d that apply when the data are normal with equal variances are unreliable.</p>","PeriodicalId":11502,"journal":{"name":"Educational and Psychological Measurement","volume":" ","pages":"00131644241278928"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562970/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational and Psychological Measurement","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/00131644241278928","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The standardized mean difference (sometimes called Cohen's d) is an effect size measure widely used to describe the outcomes of experiments. It is mathematically natural to describe differences between groups of data that are normally distributed with different means but the same standard deviation. In that context, it can be interpreted as determining several indexes of overlap between the two distributions. If the data are not approximately normally distributed or if they have substantially unequal standard deviations, the relation between d and overlap between distributions can be very different, and interpretations of d that apply when the data are normal with equal variances are unreliable.
标准化均值差异(有时称为科恩 d)是一种效应大小测量方法,广泛用于描述实验结果。它在数学上很自然地用于描述具有不同均值但相同标准差的正态分布数据组之间的差异。在这种情况下,它可以解释为确定两个分布之间重叠的几个指数。如果数据不是近似正态分布,或者它们的标准差严重不等,那么 d 与分布间重叠度之间的关系就会截然不同,而适用于数据正态分布且方差相等时的 d 解释是不可靠的。
期刊介绍:
Educational and Psychological Measurement (EPM) publishes referred scholarly work from all academic disciplines interested in the study of measurement theory, problems, and issues. Theoretical articles address new developments and techniques, and applied articles deal with innovation applications.