{"title":"Development and Usability Evaluation of COVID-Iran: A Mobile Application for Mitigating COVID-19 Misinformation.","authors":"Raheleh Salari, Farhad Fatehi, Hamed Mehdizadeh","doi":"10.4258/hir.2024.30.4.312","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The spread of misinformation through the internet can lead to dangerous behavioral changes and erode trust in reliable sources, especially during public health crises like coronavirus disease 2019 (COVID-19). To combat this issue, innovative strategies that leverage information technology are essential. This study focused on developing and evaluating a mobile application (app), COVID-Iran, aimed at countering COVID-19 misinformation by delivering accurate, reliable, and credible information.</p><p><strong>Methods: </strong>The development of the app involved a multi-step, user-centered approach that integrated qualitative expert consultations with quantitative survey research to pinpoint and validate key features. The app was initially prototyped using Enterprise Architect software and subsequently developed using Android Studio and MySQL. We conducted a usability evaluation using the System Usability Scale (SUS), where participants engaged in various tasks related to information seeking, self-assessment, and health management. Data were analyzed using descriptive statistics in SPSS version 19.</p><p><strong>Results: </strong>The findings revealed a high usability level (SUS score of 81.35), with participants reporting ease of use and learnability. The app effectively countered misinformation by providing access to trusted sources and evidence-based counterarguments. User feedback emphasized the app's strengths in clarity, accuracy, trustworthiness, and its comprehensive approach. Plans for future improvements include the integration of artificial intelligence to deliver personalized content.</p><p><strong>Conclusions: </strong>Despite limitations such as the small sample size and potential self-selection bias, this study highlights the significant potential of mHealth apps to provide reliable health information and combat misinformation.</p>","PeriodicalId":12947,"journal":{"name":"Healthcare Informatics Research","volume":"30 4","pages":"312-323"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570658/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4258/hir.2024.30.4.312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The spread of misinformation through the internet can lead to dangerous behavioral changes and erode trust in reliable sources, especially during public health crises like coronavirus disease 2019 (COVID-19). To combat this issue, innovative strategies that leverage information technology are essential. This study focused on developing and evaluating a mobile application (app), COVID-Iran, aimed at countering COVID-19 misinformation by delivering accurate, reliable, and credible information.
Methods: The development of the app involved a multi-step, user-centered approach that integrated qualitative expert consultations with quantitative survey research to pinpoint and validate key features. The app was initially prototyped using Enterprise Architect software and subsequently developed using Android Studio and MySQL. We conducted a usability evaluation using the System Usability Scale (SUS), where participants engaged in various tasks related to information seeking, self-assessment, and health management. Data were analyzed using descriptive statistics in SPSS version 19.
Results: The findings revealed a high usability level (SUS score of 81.35), with participants reporting ease of use and learnability. The app effectively countered misinformation by providing access to trusted sources and evidence-based counterarguments. User feedback emphasized the app's strengths in clarity, accuracy, trustworthiness, and its comprehensive approach. Plans for future improvements include the integration of artificial intelligence to deliver personalized content.
Conclusions: Despite limitations such as the small sample size and potential self-selection bias, this study highlights the significant potential of mHealth apps to provide reliable health information and combat misinformation.