Temitope Aderanti, Jordan M Marshall, Jose Thekkiniath
{"title":"Effect of protease inhibitors on the intraerythrocytic development of Babesia microti and Babesia duncani, the causative agents of human babesiosis.","authors":"Temitope Aderanti, Jordan M Marshall, Jose Thekkiniath","doi":"10.1111/jeu.13064","DOIUrl":null,"url":null,"abstract":"<p><p>Human babesiosis is a malaria-like, tick-borne infectious disease with a global distribution. Babesiosis is caused by intraerythrocytic, apicomplexan parasites of the genus Babesia. In the United States, human babesiosis is caused by Babesia microti and Babesia duncani. Current treatment for babesiosis includes either the combination of atovaquone and azithromycin or the combination of clindamycin and quinine. However, the side effects of these agents and the resistance posed by these parasites call for alternative approaches for treating human babesiosis. Proteases play several roles in the context of parasitic lifestyle and regulate basic biological processes including cell death, cell progression, and cell migration. Using the SYBR Green-1 assay, we screened a protease inhibitor library that consisted of 160 compounds against B. duncani in vitro and identified 13 preliminary hits. Dose response assays of hit compounds against B. duncani and B. microti under in vitro conditions identified five effective inhibitors against parasite growth. Of these compounds, we chose ixazomib, a proteasome inhibitor as a potential drug for animal studies based on its lower IC<sub>50</sub> and a higher therapeutic index in comparison with other compounds. Our results suggest that Babesia proteasome may be an important drug target and that developing this class of drugs may be important to combat human babesiosis.</p>","PeriodicalId":15672,"journal":{"name":"Journal of Eukaryotic Microbiology","volume":" ","pages":"e13064"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Eukaryotic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jeu.13064","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human babesiosis is a malaria-like, tick-borne infectious disease with a global distribution. Babesiosis is caused by intraerythrocytic, apicomplexan parasites of the genus Babesia. In the United States, human babesiosis is caused by Babesia microti and Babesia duncani. Current treatment for babesiosis includes either the combination of atovaquone and azithromycin or the combination of clindamycin and quinine. However, the side effects of these agents and the resistance posed by these parasites call for alternative approaches for treating human babesiosis. Proteases play several roles in the context of parasitic lifestyle and regulate basic biological processes including cell death, cell progression, and cell migration. Using the SYBR Green-1 assay, we screened a protease inhibitor library that consisted of 160 compounds against B. duncani in vitro and identified 13 preliminary hits. Dose response assays of hit compounds against B. duncani and B. microti under in vitro conditions identified five effective inhibitors against parasite growth. Of these compounds, we chose ixazomib, a proteasome inhibitor as a potential drug for animal studies based on its lower IC50 and a higher therapeutic index in comparison with other compounds. Our results suggest that Babesia proteasome may be an important drug target and that developing this class of drugs may be important to combat human babesiosis.
期刊介绍:
The Journal of Eukaryotic Microbiology publishes original research on protists, including lower algae and fungi. Articles are published covering all aspects of these organisms, including their behavior, biochemistry, cell biology, chemotherapy, development, ecology, evolution, genetics, molecular biology, morphogenetics, parasitology, systematics, and ultrastructure.