Potential Bias Models With Bayesian Shrinkage Priors for Dynamic Borrowing of Multiple Historical Control Data.

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Pharmaceutical Statistics Pub Date : 2024-11-17 DOI:10.1002/pst.2453
Tomohiro Ohigashi, Kazushi Maruo, Takashi Sozu, Ryo Sawamoto, Masahiko Gosho
{"title":"Potential Bias Models With Bayesian Shrinkage Priors for Dynamic Borrowing of Multiple Historical Control Data.","authors":"Tomohiro Ohigashi, Kazushi Maruo, Takashi Sozu, Ryo Sawamoto, Masahiko Gosho","doi":"10.1002/pst.2453","DOIUrl":null,"url":null,"abstract":"<p><p>When multiple historical controls are available, it is necessary to consider the conflicts between current and historical controls and the relationships among historical controls. One of the assumptions concerning the relationships between the parameters of interest of current and historical controls is known as the \"Potential biases.\" Within the \"Potential biases\" assumption, the differences between the parameters of interest of the current control and of each historical control are defined as \"potential bias parameters.\" We define a class of models called \"potential biases model\" that encompass several existing methods, including the commensurate prior. The potential bias model incorporates homogeneous historical controls by shrinking the potential bias parameters to zero. In scenarios where multiple historical controls are available, a method that uses a horseshoe prior was proposed. However, various other shrinkage priors are also available. In this study, we propose methods that apply spike-and-slab, Dirichlet-Laplace, and spike-and-slab lasso priors to the potential bias model. We conduct a simulation study and analyze clinical trial examples to compare the performances of the proposed and existing methods. The horseshoe prior and the three other priors make the strongest use of historical controls in the absence of heterogeneous historical controls and reduce the influence of heterogeneous historical controls in the presence of a few historical controls. Among these four priors, the spike-and-slab prior performed the best for heterogeneous historical controls.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pst.2453","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

When multiple historical controls are available, it is necessary to consider the conflicts between current and historical controls and the relationships among historical controls. One of the assumptions concerning the relationships between the parameters of interest of current and historical controls is known as the "Potential biases." Within the "Potential biases" assumption, the differences between the parameters of interest of the current control and of each historical control are defined as "potential bias parameters." We define a class of models called "potential biases model" that encompass several existing methods, including the commensurate prior. The potential bias model incorporates homogeneous historical controls by shrinking the potential bias parameters to zero. In scenarios where multiple historical controls are available, a method that uses a horseshoe prior was proposed. However, various other shrinkage priors are also available. In this study, we propose methods that apply spike-and-slab, Dirichlet-Laplace, and spike-and-slab lasso priors to the potential bias model. We conduct a simulation study and analyze clinical trial examples to compare the performances of the proposed and existing methods. The horseshoe prior and the three other priors make the strongest use of historical controls in the absence of heterogeneous historical controls and reduce the influence of heterogeneous historical controls in the presence of a few historical controls. Among these four priors, the spike-and-slab prior performed the best for heterogeneous historical controls.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于动态借用多个历史控制数据的贝叶斯收缩先验潜在偏差模型。
当有多个历史对照时,有必要考虑当前对照与历史对照之间的冲突以及历史对照之间的关系。关于当前控制和历史控制的相关参数之间关系的假设之一被称为 "潜在偏差"。在 "潜在偏差 "假设中,当前控制与每个历史控制的相关参数之间的差异被定义为 "潜在偏差参数"。我们定义了一类称为 "潜在偏差模型 "的模型,其中包含几种现有的方法,包括相称先验法。潜在偏差模型通过将潜在偏差参数缩减为零来纳入同质历史对照。在有多种历史控制的情况下,提出了一种使用马蹄先验的方法。不过,也有其他各种收缩先验。在本研究中,我们提出了在潜在偏倚模型中应用尖峰-平板先验、狄利克特-拉普拉斯先验和尖峰-平板拉索先验的方法。我们进行了模拟研究,并分析了临床试验实例,以比较建议方法和现有方法的性能。在没有异质历史对照的情况下,马蹄先验和其他三种先验能最有效地利用历史对照,而在有少量历史对照的情况下,则能降低异质历史对照的影响。在这四种先验中,尖峰和平板先验在异质历史控制方面的表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pharmaceutical Statistics
Pharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.70
自引率
6.70%
发文量
90
审稿时长
6-12 weeks
期刊介绍: Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics. The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.
期刊最新文献
A Bayesian Hybrid Design With Borrowing From Historical Study. WATCH: A Workflow to Assess Treatment Effect Heterogeneity in Drug Development for Clinical Trial Sponsors. A Phase I Dose-Finding Design Incorporating Intra-Patient Dose Escalation. A Likelihood Perspective on Dose-Finding Study Designs in Oncology. Flexible Spline Models for Blinded Sample Size Reestimation in Event-Driven Clinical Trials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1