Integrated systems pharmacology, molecular docking, and MD simulations investigation elucidating the therapeutic mechanisms of BHD in Alzheimer's disease treatment.

IF 3.2 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Metabolic brain disease Pub Date : 2024-11-18 DOI:10.1007/s11011-024-01460-2
Mayank Roy Chowdhury, Karamveer Karamveer, Basant K Tiwary, Navaneeth K Nampoothiri, Rajeswara Reddy Erva, Vijaykumar Sudarshana Deepa
{"title":"Integrated systems pharmacology, molecular docking, and MD simulations investigation elucidating the therapeutic mechanisms of BHD in Alzheimer's disease treatment.","authors":"Mayank Roy Chowdhury, Karamveer Karamveer, Basant K Tiwary, Navaneeth K Nampoothiri, Rajeswara Reddy Erva, Vijaykumar Sudarshana Deepa","doi":"10.1007/s11011-024-01460-2","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) poses a longstanding health challenge, prompting a century-long exploration into its etiology and progression. Despite significant advancements in medical science, current AD treatments provide only symptomatic relief, urging a shift towards innovative paradigms. This study, departing from the amyloid hypothesis, integrates Systems Pharmacology, Molecular Docking and Molecular Dynamic Simulations to investigate a polyherbal phytoformulation (US 7,273,626 B2) rooted in Ayurveda for AD, consisting of Bacopa monnieri, Hippophae rhamnoides, and Dioscorea bulbifera (BHD). Diosgenin emerges as a crucial compound, aligning with previous studies, yet recognizing its limitations in explaining BHD's mechanism, this research delves into the intricate network of interactions. Protein-Protein Interaction (PPI) network analysis identifies hub genes (ALOX5, GSK3B, ACHE, SRC, AKT1, EGFR, PIK3R1, ESR1 and APP), suggesting a systems-level modulation of AD. Enrichment analyses unveil 370 AD-associated genes and key terms like \"Cellular Response to Chemical Stimulus\" and \"Regulation of Biological Quality.\" KEGG pathway analysis underscores BHD's potential in Alzheimer's disease pathway (hsa05010), Endocrine resistance (hsa01522), and PI3K-Akt signaling (hsa04151). Molecular docking, carefully selecting compounds (Kaempferol, Quercetin, Myricetin, Isorhamnetin, Beta-Sitosterol, Stigmasterol, Emodin and Diosgenin) and top modulated targets, validates interactions with high dock scores, providing promising therapeutic avenues. Two core targets, Acetylcholinesterase (AChE) and Estrogen Receptor 1 (ESR1), were identified for further investigation due to their critical roles in Alzheimer's disease. To validate the molecular docking results, Molecular Dynamics (MD) simulations were performed on the AChE complexes with Myricetin, Beta-Sitosterol, and Stigmasterol, as well as the ESR1 complexes with Emodin, Diosgenin, and Beta-Sitosterol. These simulations were then compared to the interactions observed with the marketed drugs Donepezil and Estradiol, which are commonly used in Alzheimer's treatment. The MD simulations provided detailed insights into the stability and behavior of these complexes over time. The findings indicated that Myricetin and Emodin not only maintained stable interactions with AChE and ESR1 but also exhibited greater stability than Donepezil and Estradiol at specific time points and protein regions, as demonstrated by lower RMSD and RMSF values. These results suggest that natural compounds hold promise as potential therapeutic agents in the treatment of Alzheimer's disease, offering new avenues for drug development, while the formulation BHD shows potential as an adjuvant in integrative medicine alongside standard Alzheimer's treatments, effectively targeting related pathways and genes.</p>","PeriodicalId":18685,"journal":{"name":"Metabolic brain disease","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic brain disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11011-024-01460-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) poses a longstanding health challenge, prompting a century-long exploration into its etiology and progression. Despite significant advancements in medical science, current AD treatments provide only symptomatic relief, urging a shift towards innovative paradigms. This study, departing from the amyloid hypothesis, integrates Systems Pharmacology, Molecular Docking and Molecular Dynamic Simulations to investigate a polyherbal phytoformulation (US 7,273,626 B2) rooted in Ayurveda for AD, consisting of Bacopa monnieri, Hippophae rhamnoides, and Dioscorea bulbifera (BHD). Diosgenin emerges as a crucial compound, aligning with previous studies, yet recognizing its limitations in explaining BHD's mechanism, this research delves into the intricate network of interactions. Protein-Protein Interaction (PPI) network analysis identifies hub genes (ALOX5, GSK3B, ACHE, SRC, AKT1, EGFR, PIK3R1, ESR1 and APP), suggesting a systems-level modulation of AD. Enrichment analyses unveil 370 AD-associated genes and key terms like "Cellular Response to Chemical Stimulus" and "Regulation of Biological Quality." KEGG pathway analysis underscores BHD's potential in Alzheimer's disease pathway (hsa05010), Endocrine resistance (hsa01522), and PI3K-Akt signaling (hsa04151). Molecular docking, carefully selecting compounds (Kaempferol, Quercetin, Myricetin, Isorhamnetin, Beta-Sitosterol, Stigmasterol, Emodin and Diosgenin) and top modulated targets, validates interactions with high dock scores, providing promising therapeutic avenues. Two core targets, Acetylcholinesterase (AChE) and Estrogen Receptor 1 (ESR1), were identified for further investigation due to their critical roles in Alzheimer's disease. To validate the molecular docking results, Molecular Dynamics (MD) simulations were performed on the AChE complexes with Myricetin, Beta-Sitosterol, and Stigmasterol, as well as the ESR1 complexes with Emodin, Diosgenin, and Beta-Sitosterol. These simulations were then compared to the interactions observed with the marketed drugs Donepezil and Estradiol, which are commonly used in Alzheimer's treatment. The MD simulations provided detailed insights into the stability and behavior of these complexes over time. The findings indicated that Myricetin and Emodin not only maintained stable interactions with AChE and ESR1 but also exhibited greater stability than Donepezil and Estradiol at specific time points and protein regions, as demonstrated by lower RMSD and RMSF values. These results suggest that natural compounds hold promise as potential therapeutic agents in the treatment of Alzheimer's disease, offering new avenues for drug development, while the formulation BHD shows potential as an adjuvant in integrative medicine alongside standard Alzheimer's treatments, effectively targeting related pathways and genes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合系统药理学、分子对接和 MD 模拟研究,阐明 BHD 在阿尔茨海默病治疗中的治疗机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolic brain disease
Metabolic brain disease 医学-内分泌学与代谢
CiteScore
5.90
自引率
5.60%
发文量
248
审稿时长
6-12 weeks
期刊介绍: Metabolic Brain Disease serves as a forum for the publication of outstanding basic and clinical papers on all metabolic brain disease, including both human and animal studies. The journal publishes papers on the fundamental pathogenesis of these disorders and on related experimental and clinical techniques and methodologies. Metabolic Brain Disease is directed to physicians, neuroscientists, internists, psychiatrists, neurologists, pathologists, and others involved in the research and treatment of a broad range of metabolic brain disorders.
期刊最新文献
Bushen Huoxue acupuncture ameliorates Alzheimer's disease by upregulating MARCHF3 to induce NLRP3 ubiquitination and inhibit caspase-1-dependent pyroptosis. Gallic acid ameliorates LPS-induced memory decline by modulating NF-κB, TNF-α, and Caspase 3 gene expression and attenuating oxidative stress and neuronal loss in the rat hippocampus. Integrated systems pharmacology, molecular docking, and MD simulations investigation elucidating the therapeutic mechanisms of BHD in Alzheimer's disease treatment. Diacerein ameliorates thioacetamide-induced hepatic encephalopathy in rats via modulation of TLR4/AQP4/MMP-9 axis. The neuroprotective effects of progesterone against peripheral neuropathy: a systematic review of non-clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1