Zhonghang Chen, Peiyu Fang, Jiangnan Li, Xue Han, Wenhao Huang, Wenyue Cui, Zhiwei Liu, Mark R Warren, David Allan, Peng Cheng, Sihai Yang, Wei Shi
{"title":"Rapid extraction of trace benzene by a crown-ether-based metal-organic framework.","authors":"Zhonghang Chen, Peiyu Fang, Jiangnan Li, Xue Han, Wenhao Huang, Wenyue Cui, Zhiwei Liu, Mark R Warren, David Allan, Peng Cheng, Sihai Yang, Wei Shi","doi":"10.1093/nsr/nwae342","DOIUrl":null,"url":null,"abstract":"<p><p>Due to almost identical boiling points of benzene and cyclohexane, the extraction of trace benzene from cyclohexane is currently performed <i>via</i> the energy-intensive extractive distillation method. Their adsorptive separation by porous materials is hampered by their similar dimensions. Metal-organic frameworks (MOFs) with versatile pore environments are capable of molecular discrimination, but the separation of trace substrates in liquid-phase remains extremely challenging. Herein, we report a robust MOF (NKU-300) with triangular channels decorated with crown ether that can discriminate trace benzene from cyclohexane, exhibiting an unprecedented selectivity of 8615(10) for the mixture of benzene/cyclohexane (v/v = 1/1000). Remarkably, NKU-300 demonstrates exceptional selectivities for the extraction of benzene from cyclohexane over a wide range of concentrations of 0.1%-50% with ultrafast sorption kinetics and excellent stability. Single-crystal X-ray diffraction and computational modelling reveal that multiple supramolecular interactions cooperatively immobilise benzene molecules in the triangular channel, enabling superior separation performance. This study will promote the application of advanced sorbents with tailored binding sites for challenging industrial separations.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 12","pages":"nwae342"},"PeriodicalIF":16.3000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562822/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae342","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Due to almost identical boiling points of benzene and cyclohexane, the extraction of trace benzene from cyclohexane is currently performed via the energy-intensive extractive distillation method. Their adsorptive separation by porous materials is hampered by their similar dimensions. Metal-organic frameworks (MOFs) with versatile pore environments are capable of molecular discrimination, but the separation of trace substrates in liquid-phase remains extremely challenging. Herein, we report a robust MOF (NKU-300) with triangular channels decorated with crown ether that can discriminate trace benzene from cyclohexane, exhibiting an unprecedented selectivity of 8615(10) for the mixture of benzene/cyclohexane (v/v = 1/1000). Remarkably, NKU-300 demonstrates exceptional selectivities for the extraction of benzene from cyclohexane over a wide range of concentrations of 0.1%-50% with ultrafast sorption kinetics and excellent stability. Single-crystal X-ray diffraction and computational modelling reveal that multiple supramolecular interactions cooperatively immobilise benzene molecules in the triangular channel, enabling superior separation performance. This study will promote the application of advanced sorbents with tailored binding sites for challenging industrial separations.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.