{"title":"Recent advances in microenvironment regulation for electrocatalysis.","authors":"Zhiyuan Xu, Xin Tan, Chang Chen, Xingdong Wang, Rui Sui, Zhongbin Zhuang, Chao Zhang, Chen Chen","doi":"10.1093/nsr/nwae315","DOIUrl":null,"url":null,"abstract":"<p><p>High-efficiency electrocatalysis could serve as the bridge that connects renewable energy technologies, hydrogen economy and carbon capture/utilization, promising a sustainable future for humankind. It is therefore of paramount significance to explore feasible strategies to modulate the relevant electrocatalytic reactions and optimize device performances so as to promote their large-scale practical applications. Microenvironment regulation at the catalytic interface has been demonstrated to be capable of effectively enhancing the reaction rates and improving the selectivities for specific products. In this review we summarize the latest advances in microenvironment regulation in typical electrocatalytic processes (including water electrolysis, hydrogen-oxygen fuel cells, and carbon dioxide reduction) and the related <i>in situ</i>/<i>operando</i> characterization techniques and theoretical simulation methods. At the end of this article, we present an outlook on development trends and possible future directions.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"11 12","pages":"nwae315"},"PeriodicalIF":16.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11562841/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae315","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
High-efficiency electrocatalysis could serve as the bridge that connects renewable energy technologies, hydrogen economy and carbon capture/utilization, promising a sustainable future for humankind. It is therefore of paramount significance to explore feasible strategies to modulate the relevant electrocatalytic reactions and optimize device performances so as to promote their large-scale practical applications. Microenvironment regulation at the catalytic interface has been demonstrated to be capable of effectively enhancing the reaction rates and improving the selectivities for specific products. In this review we summarize the latest advances in microenvironment regulation in typical electrocatalytic processes (including water electrolysis, hydrogen-oxygen fuel cells, and carbon dioxide reduction) and the related in situ/operando characterization techniques and theoretical simulation methods. At the end of this article, we present an outlook on development trends and possible future directions.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.