{"title":"Application of magnetic resonance imaging and artificial intelligence algorithms in cancer screening","authors":"Jian Guo, Yu Xue","doi":"10.1016/j.slast.2024.100218","DOIUrl":null,"url":null,"abstract":"<div><div>In this society with a high incidence of cancer, cancer screening has become an important method to reduce the incidence and mortality of cancer. Traditional cancer screening methods such as CT have certain limitations and are difficult to adapt to large-scale and periodic cancer screening scenarios. Magnetic resonance imaging technology is an effective auxiliary method in CT methods, which can achieve high image resolution at lower doses and lower costs. Therefore, magnetic resonance imaging has become the most popular imaging method in clinical practice and a key research direction in the field of medical imaging. Therefore, this article intends to conduct in-depth research on the application of image feature extraction based on magnetic resonance imaging and artificial intelligence algorithms in cancer screening. This article introduces particle swarm optimization algorithm into the learning of artificial intelligence models and further improves it. And compared multiple algorithms, such as Chaos Particle Swarm Optimization, Genetic Particle Swarm Optimization, and Grey Wolf Algorithm, in order to verify the effectiveness and feasibility of the algorithm proposed in this paper. On this basis, the intelligent optimization algorithm was further improved and validated. Experimental results have shown that the new method proposed in this article has strong fault tolerance, and various functional modules of the cancer screening management system have been optimized and designed from five aspects: front-end, back-end, external, database, and infrastructure.</div></div>","PeriodicalId":54248,"journal":{"name":"SLAS Technology","volume":"29 6","pages":"Article 100218"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLAS Technology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472630324001006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In this society with a high incidence of cancer, cancer screening has become an important method to reduce the incidence and mortality of cancer. Traditional cancer screening methods such as CT have certain limitations and are difficult to adapt to large-scale and periodic cancer screening scenarios. Magnetic resonance imaging technology is an effective auxiliary method in CT methods, which can achieve high image resolution at lower doses and lower costs. Therefore, magnetic resonance imaging has become the most popular imaging method in clinical practice and a key research direction in the field of medical imaging. Therefore, this article intends to conduct in-depth research on the application of image feature extraction based on magnetic resonance imaging and artificial intelligence algorithms in cancer screening. This article introduces particle swarm optimization algorithm into the learning of artificial intelligence models and further improves it. And compared multiple algorithms, such as Chaos Particle Swarm Optimization, Genetic Particle Swarm Optimization, and Grey Wolf Algorithm, in order to verify the effectiveness and feasibility of the algorithm proposed in this paper. On this basis, the intelligent optimization algorithm was further improved and validated. Experimental results have shown that the new method proposed in this article has strong fault tolerance, and various functional modules of the cancer screening management system have been optimized and designed from five aspects: front-end, back-end, external, database, and infrastructure.
期刊介绍:
SLAS Technology emphasizes scientific and technical advances that enable and improve life sciences research and development; drug-delivery; diagnostics; biomedical and molecular imaging; and personalized and precision medicine. This includes high-throughput and other laboratory automation technologies; micro/nanotechnologies; analytical, separation and quantitative techniques; synthetic chemistry and biology; informatics (data analysis, statistics, bio, genomic and chemoinformatics); and more.