Mapping multi-regional functional connectivity of astrocyte-neuronal networks during behaviors.

IF 4.8 2区 医学 Q1 NEUROSCIENCES Neurophotonics Pub Date : 2024-10-01 Epub Date: 2024-11-15 DOI:10.1117/1.NPh.11.4.045010
Haoyu Wang, Mingzhu Huang, Shaofan Yang, Jiameng Xu, Jin Li, Han Qin, Shanshan Liang, Teng Teng, Chuanyan Yang, Mingyue Gong, Yong He, Xingyi Li, Huiquan Wang, Xiang Liao, Xiaowei Chen, Zhiqi Yang, Kuan Zhang
{"title":"Mapping multi-regional functional connectivity of astrocyte-neuronal networks during behaviors.","authors":"Haoyu Wang, Mingzhu Huang, Shaofan Yang, Jiameng Xu, Jin Li, Han Qin, Shanshan Liang, Teng Teng, Chuanyan Yang, Mingyue Gong, Yong He, Xingyi Li, Huiquan Wang, Xiang Liao, Xiaowei Chen, Zhiqi Yang, Kuan Zhang","doi":"10.1117/1.NPh.11.4.045010","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Diverse behaviors rely on coordinated activity and multi-regional functional connectivity within astrocyte-neuronal networks. However, current techniques for simultaneously measuring astrocytic and neuronal activities across multiple brain regions during behaviors remain limited.</p><p><strong>Aim: </strong>We propose a multi-fiber solution that can simultaneously record activities of astrocyte-neuronal networks across multiple regions during behaviors.</p><p><strong>Approach: </strong>We employed cell-specific dual-color genetically encoded calcium indicators (GECIs) and multi-fiber photometry to simultaneously measure astrocytic and neuronal Ca<sup>2+</sup> transients across multiple brain regions in freely behaving animals.</p><p><strong>Results: </strong>Our findings demonstrate that both movements and sensory stimuli induce synchronized and highly correlated Ca<sup>2+</sup> transients in astrocytes and neurons of freely behaving mice. In addition, we recorded astrocytic and neuronal Ca<sup>2+</sup> transients from multiple brain regions during mouse behaviors. Our observations reveal heightened synchronization of astrocytic and neuronal Ca<sup>2+</sup> transients across different brain regions during movements or sensory stimuli, indicating enhanced functional connectivity within brain-wide astrocyte-neuronal networks.</p><p><strong>Conclusions: </strong>Multi-fiber photometry, combined with cell-specific dual-color GECIs, represents a powerful approach for investigating astrocytic and neuronal activities across different brain regions during behaviors. This technique serves as a versatile tool for analyzing the multi-regional functional connectivity map of astrocyte-neuronal networks associated with specific behaviors.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 4","pages":"045010"},"PeriodicalIF":4.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566604/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.11.4.045010","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Diverse behaviors rely on coordinated activity and multi-regional functional connectivity within astrocyte-neuronal networks. However, current techniques for simultaneously measuring astrocytic and neuronal activities across multiple brain regions during behaviors remain limited.

Aim: We propose a multi-fiber solution that can simultaneously record activities of astrocyte-neuronal networks across multiple regions during behaviors.

Approach: We employed cell-specific dual-color genetically encoded calcium indicators (GECIs) and multi-fiber photometry to simultaneously measure astrocytic and neuronal Ca2+ transients across multiple brain regions in freely behaving animals.

Results: Our findings demonstrate that both movements and sensory stimuli induce synchronized and highly correlated Ca2+ transients in astrocytes and neurons of freely behaving mice. In addition, we recorded astrocytic and neuronal Ca2+ transients from multiple brain regions during mouse behaviors. Our observations reveal heightened synchronization of astrocytic and neuronal Ca2+ transients across different brain regions during movements or sensory stimuli, indicating enhanced functional connectivity within brain-wide astrocyte-neuronal networks.

Conclusions: Multi-fiber photometry, combined with cell-specific dual-color GECIs, represents a powerful approach for investigating astrocytic and neuronal activities across different brain regions during behaviors. This technique serves as a versatile tool for analyzing the multi-regional functional connectivity map of astrocyte-neuronal networks associated with specific behaviors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绘制行为过程中星形胶质细胞-神经元网络的多区域功能连接图
意义重大:多种行为依赖于星形胶质细胞-神经元网络内的协调活动和多区域功能连接。目的:我们提出了一种多纤维解决方案,可在行为过程中同时记录多个区域的星形胶质细胞-神经元网络活动:方法:我们采用细胞特异性双色基因编码钙离子指示剂(GECIs)和多纤维光度法同时测量自由行为动物多个脑区的星形胶质细胞和神经元的 Ca2+ 瞬态:结果:我们的研究结果表明,运动和感觉刺激都会诱发自由行为小鼠星形胶质细胞和神经元中同步且高度相关的 Ca2+ 瞬态。此外,我们还记录了小鼠行为过程中多个脑区的星形胶质细胞和神经元的 Ca2+ 瞬态。我们的观察结果表明,在运动或感觉刺激过程中,不同脑区的星形胶质细胞和神经元Ca2+瞬态同步性增强,这表明全脑星形胶质细胞-神经元网络的功能连接性增强:结论:多纤维光度法与细胞特异性双色 GECIs 相结合,是研究行为过程中不同脑区星形胶质细胞和神经元活动的有力方法。这项技术是分析与特定行为相关的星形胶质细胞-神经元网络的多区域功能连接图的多功能工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
期刊最新文献
Viscocohesive hyaluronan gel enhances stability of intravital multiphoton imaging with subcellular resolution. Zika virus encephalitis causes transient reduction of functional cortical connectivity. Early changes in spatiotemporal dynamics of remapped circuits and global networks predict functional recovery after stroke in mice. Distribution of spine classes shows intra-neuronal dendritic heterogeneity in mouse cortex. Expansion microscopy reveals neural circuit organization in genetic animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1