Effects of Release of TSG-6 from Heparin Hydrogels on Supraspinatus Muscle Regeneration.

IF 3.5 3区 医学 Q3 CELL & TISSUE ENGINEERING Tissue Engineering Part A Pub Date : 2024-11-18 DOI:10.1089/ten.tea.2024.0241
Joseph J Pearson, Jiahui Mao, Johnna S Temenoff
{"title":"Effects of Release of TSG-6 from Heparin Hydrogels on Supraspinatus Muscle Regeneration.","authors":"Joseph J Pearson, Jiahui Mao, Johnna S Temenoff","doi":"10.1089/ten.tea.2024.0241","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated [Hep] and fully desulfated [Hep-]) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of tumor necrosis factor-stimulated gene 6 (TSG-6) over 14+ days <i>in vivo</i> in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles <i>in vivo</i>, thus facilitating comparisons between delivery from heparin derivatives on the level of tissue repair in two different areas of muscle (near the myotendious junction [MTJ] and in the muscle belly [MB]) that have been shown previously to have differing responses to rotator cuff tendon injury. We hypothesized that sustained delivery of TSG-6 would enhance the anti-inflammatory response following rotator cuff injury through macrophage polarization and that release from Hep would potentiate this effect throughout the muscle. Inflammatory/immune cells, satellite cells, and fibroadipogenic progenitor cells were analyzed by flow cytometry 3 and 7 days after injury and hydrogel injection, while metrics of muscle healing were examined via immunohistochemistry up to day 14. Results showed controlled delivery of TSG-6 from Hep caused heightened macrophage response (day 7 macrophages, 4.00 ± 1.85% single cells, M2a, 3.27 ± 1.95% single cells) and increased markers of early muscle regeneration (embryonic heavy chain staining) by day 7, particularly in the MTJ region of the muscle. This work provides a novel strategy for localized, controlled delivery of TSG-6 to enhance muscle healing after rotator cuff tear.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tea.2024.0241","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Muscle degeneration after rotator cuff tendon tear is a significant clinical problem. In these experiments, we developed a poly(ethylene glycol)-based injectable granular hydrogel containing two heparin derivatives (fully sulfated [Hep] and fully desulfated [Hep-]) as well as a matrix metalloproteinase-sensitive peptide to promote sustained release of tumor necrosis factor-stimulated gene 6 (TSG-6) over 14+ days in vivo in a rat model of rotator cuff muscle injury. The hydrogel formulations demonstrated similar release profiles in vivo, thus facilitating comparisons between delivery from heparin derivatives on the level of tissue repair in two different areas of muscle (near the myotendious junction [MTJ] and in the muscle belly [MB]) that have been shown previously to have differing responses to rotator cuff tendon injury. We hypothesized that sustained delivery of TSG-6 would enhance the anti-inflammatory response following rotator cuff injury through macrophage polarization and that release from Hep would potentiate this effect throughout the muscle. Inflammatory/immune cells, satellite cells, and fibroadipogenic progenitor cells were analyzed by flow cytometry 3 and 7 days after injury and hydrogel injection, while metrics of muscle healing were examined via immunohistochemistry up to day 14. Results showed controlled delivery of TSG-6 from Hep caused heightened macrophage response (day 7 macrophages, 4.00 ± 1.85% single cells, M2a, 3.27 ± 1.95% single cells) and increased markers of early muscle regeneration (embryonic heavy chain staining) by day 7, particularly in the MTJ region of the muscle. This work provides a novel strategy for localized, controlled delivery of TSG-6 to enhance muscle healing after rotator cuff tear.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从肝素水凝胶中释放 TSG-6 对冈上肌再生的影响
肩袖肌腱撕裂后的肌肉变性是一个重要的临床问题。在这些实验中,我们开发了一种基于聚乙二醇的可注射颗粒状水凝胶,其中含有两种肝素衍生物(全硫酸化[Hep]和全脱硫[Hep-])以及基质金属蛋白酶敏感肽,可在大鼠肩袖肌肉损伤模型中促进肿瘤坏死因子刺激基因 6(TSG-6)在体内持续释放 14 天以上。水凝胶制剂在体内显示出相似的释放曲线,因此有助于比较肝素衍生物在两个不同肌肉区域(肌腱连接处附近和肌腹)的组织修复水平上的递送情况。我们假设 TSG-6 的持续输送将通过巨噬细胞极化增强肩袖损伤后的抗炎反应,而 Hep 的释放将增强整个肌肉的这种效应。在损伤和注射水凝胶 3 天和 7 天后,通过流式细胞术分析了炎症/免疫细胞、卫星细胞和成纤维祖细胞,同时通过免疫组化检查了肌肉愈合的指标,直至第 14 天。结果表明,从 Hep 控制性递送 TSG-6 可增强巨噬细胞反应(第 7 天巨噬细胞,单细胞比例为 4.00 ± 1.85%;M2a,单细胞比例为 3.27 ± 1.95%),并在第 7 天增加早期肌肉再生标记物(胚胎重链染色),尤其是在肌肉的 MTJ 区域。这项研究为局部可控输送 TSG-6 以增强肩袖撕裂后的肌肉愈合提供了一种新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue Engineering Part A
Tissue Engineering Part A Chemical Engineering-Bioengineering
CiteScore
9.20
自引率
2.40%
发文量
163
审稿时长
3 months
期刊介绍: Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
期刊最新文献
Evaluation of Dexamethasone-Eluting Cell-Seeded Constructs in a Preclinical Canine Model of Cartilage Repair. Perspectives on Recent Developments and Directions in Tissue Engineering and Regenerative Medicine. Applications of Regenerative Tissue-Engineered Scaffolds for Treatment of Spinal Cord Injury. Decellularized Extracellular Matrix Improves Mesenchymal Stromal Cell Spheroid Response to Chondrogenic Stimuli. Differentiated and Untreated Juvenile Chondrocyte Sheets Regenerate Cartilage Similarly In Vivo.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1